

Digit-Ease

Smart Glove System for ambulatory measurement of joint range of motion and stiffness

James Connolly^a, Joan Condell^a, Kevin Curran^a, Philip Gardiner^b, Brendan O'Flynn^c, Javier Torres Sanchez^c, Philip Angrove^c, Shirley Coyle^d

^aIntelligent Systems Research Centre (ISRC), University of Ulster, Magee Campus ^bWestern Health and Social Care Trust, Altnagelvin Hospital, Londonderry, Northern Ireland ^cTyndall National Institute, University College Cork, Cork ^dCLARITY:Centre for Sensor Web Technologies, Dublin City University, Dublin 9

Background

- Rheumatoid Arthritis (RA) is a disease that attacks the joints of the human skeleton (see Fig. 1).
- In 2011, RA affected up to 500,000 of the UK population and starts between the ages of 40-50. It is commoner in women [1].
- Around 20,000 new cases of RA are diagnosed every year in the U.K [2].
- Four out of ten people give up their job within five years of Figure 1 finger joints affected by RA disease diagnosis.
- Joint stiffness is a common complaint of RA sufferers.

Figure 2 – example of goniometer used for

- RA is currently diagnosed by clinicians and therapists using x-rays and manual evaluation methods including a goniometer (Fig 2), tape measure and visual evaluation.
- Measures flexion, extension, abduction and adduction of finger joints.
- Joint Stiffness is currently measured using a Disease Activity Scale and the Health Assessment Questionnaire.
- Difficult to record the onset of stiffness with this equipment as it occurs most frequently in the morning at home.

Materials and Methods

Digit-Ease project is a smart glove system integrating sensors, processors, wireless technology and algorithms to empirically measure Range of Motion and assess the progression of joint stiffness.

Figure 5 – creating a new objective

Figure 7 – Comparison of several objective repetitions

Auto-calibrating

- New glove containing multiple accelerometers, bend sensors and force sensors eliminates the need for calibration (Fig. 3)
- Glove is automatically calibrated using Neural Network and accelerometer inputs from glove (Fig. 4)[3]

Patient access at home

- Clinician assigns objective from the objective bank to the patient or creates a new tailored one (Fig. 5).
- Patient attends clinic session and completes an objective routine. This is used as a baseline for comparison to future objectives.
- Patient logs into system and selects objective routine. Patient shown 3D hand movement during objective progression (Fig. 6)

Cloud-based analysis

- Clinician can compare individual repetitions from several objectives completed by the patient (Fig. 7).
- Objective routine is uploaded to a cloud database. Clinician can immediately view completed objective routine statistics and a 3D image as it happened at the patients home (Fig 8).

Figure 6 – 3D hand moves in tandem with patient movement in glove. Provides feedback to patient on objective progression

Figure 8 – Playback of movement recorded by the patient at home

glove concept shown in Figure 9

Glove structure design

- Physical attributes of the glove structure has been modified to allow easier donning and doffing and to protect glove circuitry from unintentional stretching.
- Using a zip on the underside of the glove relieves pressure across the knuckle joint.
- Using lightweight fabric strips along each fingertip reduces pulling force during removal.

Figure 12 – sketch showing concept ideas for easy glove removal strips for easy glove removal

Results

• Results show variance between repetition velocity (Fig. 13) and angular movement (Fig. 14) within objective.

Figure 13 – velocity chart for middle MCP joint captured during an objective routine. Four repetitions are overlaid to compare variance in movement. Velocity is displayed in degrees / millisecond over time.

each repetition. Angular motion is displayed in degrees over time.

Conclusion

- Digit-Ease is a Range Of Motion tool consisting of a wearable glove and a 3D interface.
- first ambulatory system to detect joint stiffness at home.
- Automatically calibrates glove using Neural Network and accelerometer data.
- Records minimum and maximum angular and velocity values during an exercise routine.
- Data is uploaded onto a database hosted in the cloud for immediate analysis by the clinician.
- Comparison of previous movement data provides indicators on improvement or decline.
- Determines the degree of deformity of the hand and stiffness of the moving finger joints.

References