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Abstract—Quantifying individual’s levels of activity through 

smart or proprietary devices is currently an active area of 

research. Current implementations use subjective methods, for 

instance, questionnaires or require comprehensively annotated 

datasets for automated classification. Each method brings its own 

specific drawbacks. Questionnaires cause recall bias and 

providing annotations for datasets is difficult and tedious. 

Weakly supervised methodologies provide methodologies for 

handling inaccurate or incomplete annotations and literature has 

shown their effectiveness for classifying activity data. As a key 

issue of activity recognition is capturing annotations, the aim of 

this work is to evaluate how classification performance is affected 

by limiting annotations and to investigate potential solutions. 

Experience sampling combined with the algorithms in this paper 

can result in a classifier accuracy of 74% with a 99.8% reduction 

in annotations, with increased compute overheads. This paper 

shows that experience sampling combined with a method of 

populating labels to unlabeled feature vectors can be a viable 

solution to the annotation problem. 

Keywords—Activity recognition; weak supervision; experience 

sampling; multi-class classification; ECOC SVM 

I. INTRODUCTION 

Currently, the practicality of collecting user specific 
activity data has never been so high. This is due to the global 
adoption of smart devices across users of all age ranges, 
providing new opportunities for signal analysis and the 
application of pattern recognition techniques. 

With advances in healthcare leading to extensions in 
overall lifespan, the elderly are becoming a larger proportion of 
the overall population, placing a greater strain on the healthcare 
system and increasing the associated costs [1]. As a result, 
methods of automated activity detection are receiving interest 
in research. Methods of detecting the onset of serious medical 
issues, for example, gait analysis of an individual thought to be 
suffering from Parkinson’s disease has advantages both in 
patient care and potentially reducing the cost to healthcare 
providers [2]. Wearable devices can also be useful in the field 
of biometric security, and sports such as dart throw 
analysis [3]. 

A prominent issue and the focus of this research is the 
problem of annotated data. Having a fully annotated dataset is 
desirable as it provides the maximum amount of training data 
for a supervised classifier to learn from. This gives the 
classifier the best chance at recognizing this activity when new 

unseen data is introduced. Generally, fully annotated data is 
expensive to record [4]. This is due to both the effort involved 
in the capture process but also the equipment and setup [2]. 
The typical setup of an activity recognition capture session 
involves connecting multiple sensors and performing the same 
activity over an extended period to ensure sufficient data is 
available to both train and validate the model. Many studies are 
also performed in laboratory settings, further complicating the 
capture of useful data [1]. Even with a successfully completed 
data capture experiment, we are limited not only to the 
activities captured but also to the individuals who performed 
them. A system which is trained to recognized activities of a 
specific person will always be more successful than a generic 
system. This is due to the slight idiosyncrasies displayed by 
each person in performing the same activity. However, with 
many movement sensors having high refresh rates, asking users 
to accurately annotate their own activities is not feasible. For 
this reason, weakly supervised methodologies are being 
proposed to solve the issue. These methodologies take 
considerably weaker labelling information than normal 
supervised methods [5]. Generally, unlabeled data is available 
in greater quantities than labelled data. Weak supervision takes 
advantage of this and tries to gain information from the 
relationship between labelled and unlabeled data points [4]. 

If wearables are to be used, and if the models are to be truly 
tailored to each user, then a method of gathering data from the 
user is required to allow data to be annotated. One avenue is to 
use the experience sampling method which is a type of diary 
study where the user will annotate the data manually. Although 
this type of data collection could be considered intrusive if a 
user is requested for data continuously [4]. In order to reduce 
the number of queries sent to the user and therefore reduce the 
intrusiveness of the method, weak supervision techniques can 
be used to gather extra information about the data points which 
the user annotated. 

This paper sets out to show that experience sampling in 
combination with a method of weak learning could provide a 
solution to the problem of annotated data for activity 
recognition. 

Section III demonstrates our methodology, Section IV 
outlines the experiments, Section V discusses results and 
Section VI presents our conclusions and recommendations for 
future work. 
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II. RELATED WORK 

Research into weak supervision for activity recognition has 
shown potential [4], [6]. Experience sampling, a type of diary 
study, has been used to gather annotations from the user about 
the activity they are performing. Multiple methods of 
annotation request are used, some which ask what activity 
users have been performing the most over a given time frame 
and some which ask for all the activities performed within the 
time window [4]. Instead of polling users at fixed intervals, 
context aware methods of experience sampling exist but have 
not been tested for the purpose of activity recognition. These 
apply a cost benefit approach to asking the user for input [7]. 
This approach could be useful in reducing the number of 
intrusive data requests the system makes. 

Weak supervision techniques are variations on standard 
supervised techniques, they attempt to focus on gaining 
knowledge from the unlabeled data as it is available in far 
greater quantities than labelled data. One such variation is 
multiple instance learning which places feature vectors into 
sets known as bags. Classifiers, for instance, SVM are 
modified to accept these bags. Previous work applied a 
multiple instance SVM with experience sampling. Classifier 
accuracy improved in comparison to an SVM provided only 
the labels gained through experience sampling for sampling 
windows of 10, 30 and 120 minutes [4]. 

Another weak supervision method is graph label 
propagation which attempts to group labelled and unlabeled 
data into communities. Each community is then assigned a 
label based on the known labelled instances inside these 
communities. This label is then applied to all the unlabeled 
instances within that community. When applied to the TU 
Darmstadt dataset, graph label propagation exceeded the 
baseline accuracies set by an SVM trained with full ground 
truth [4]. 

Active learning for activity recognition, which attempts to 
discover the unlabeled data points which the classifier can 
learn most from. When applied to accelerometer data which 
initially has minimal annotations it provides a significant 
increase in accuracy [6]. However, issues with active learning 
are noisy annotators and the classifier may focus on difficult to 
annotate data points [8]. 

III. METHODOLOGY 

A. Dataset 

The Human Activities and Postural Transitions (HAPT) 
dataset [9] uses a waist mounted smartphone to collect 6 
activities. The signals from the gyroscope and the 
accelerometer are sampled at 50Hz. In total, 30 participants are 
included in the dataset with the age range being between 19-48 
years. 

The dataset contains a mixture of static and dynamic 
activities as well as the postural transitions which occurred on 
the static activities. For the purposes of this experiment, the 
postural transitions are being ignored. The static activities 
performed are standing, sitting and lying and the dynamic 
activities are walking, walking upstairs/downstairs. 

Validation is achieved through the use of a random 
train/test split. The participants in the training set are 
completely independent of the test set, so the system will not 
be tested on individuals it has been trained on. The training 
data is made up of 70% of the participants and the test data of 
the remaining 30%. 

B. Feature Extraction 

The features used for this dataset are pre-computed. They 
come from the raw 3-axis accelerometer and gyroscope signals 
and are a mixture of time domain and frequency domain 
features. The signals are de-noised using a median and low 
pass Butterworth filter. Five different time series are produced 
from these signals. Acceleration values produced from “body” 
movements and the acceleration values produced from gravity. 
The signals are split using a low pass Butterworth filter. The 
jerk of the body signals are then produced by calculating the 
rate of change of the acceleration values with respect to time. 
The time series now produced are the acceleration due to 
gravity, the body acceleration, the body gyroscope acceleration 
and jerk of the body signals. The magnitude of each of these is 
calculated using norms. Fast Fourier transforms are calculated 
from these signals. 

The signals are split into windows which are 128 samples 
in length, approximately 2.6 seconds of data. Several variables 
are calculated from each of these signals, including mean, 
standard deviation, max/min values, median absolute deviation, 
signal magnitude area, energy of signal, interquartile range, 
signal entropy, correlation coefficients, the auto regression 
coefficient, angle between the vectors, skewness, kurtosis, 
mean frequency, frequency component which has the largest 
magnitude and energy of the frequency interval of the Fourier 
transform window. The mean of the angle between the vectors 
is also calculated. This results in a 561 length feature vector. 

C. Experience Sampling 

Experience sampling is a diary study method for gathering 
data from a user. We simulate it in this experiment by asking a 
user for data about each activity they are currently performing. 
This process is simulated by finding which feature vectors lie 
on the experience sampling intervals. E.g. for a one minute 
experience sampling window, the feature vector which lies on 
exactly one minute will be used. The annotation for this feature 
vector is then obtained from the original set of annotations. 

A consequence of this method is that we only get back 
what we ask from the user. Requesting more data from the user 
will be beneficial to the experiment as it could provide more 
data for training but such a system could be considered 
intrusive to the user. With this in mind, designing the questions 
the system will ask the user is important. Previous 
implementations have asked for data like what activity they 
have been performing the most since the previous data request 
and what activity are they currently performing. This 
experiment will only simulate asking what they are currently 
performing and will label the current feature vector with the 
data collected from the user. 

A potential issue is that when a user is about to input the 
data they will move the device, and the movement of using the 
device will be incorrectly labelled as the locomotive activity 



Intelligent Systems Conference 2018 

6-7 September 2018 | London, UK 

3 | P a g e  

978-1-5386-4185-9/18/$31.00 ©2018 IEEE 

they are performing. Since this data has been pre-collected and 
since we are simulating the user entering a label, this is not an 
issue but if this were to be used on an online system it would 
require data collection to be halted until the user has completed 
the request and resume once they have stopped using the 
device. 

The experience sampling will be performed using several 
different time intervals. The simulated annotation requests will 
be performed every 1, 3, 5, 10, 15, 20, 30 and 60 minutes. 

To ensure that the experience sampling methodology is 
providing an unbiased view of the data, the sampling times are 
being randomly moved back and forward by a few seconds. 
The entire experiment is then repeated with these new 
experience sampling labels. This process is only performed on 
the training data, the test set does not change. 

1) Short experience sampling windows (1-5 minutes) 
It can be expected that the short experience sampling 

windows will perform like the fully supervised approach. At 
one minute intervals, even with 95% of labels removed, the 
system should still have sufficient data to classify 6 activities 
with reasonable accuracy. 

2) Medium experience sampling windows (10-20 minutes) 
We postulate that this could be the optimal window size as 

it provides an acceptable break between data collection 
requests, while potentially providing enough data for 
classification. 

3) Long experience sampling windows (30+ minutes) 
It is suspected that this length of sampling windows will 

show the limitations of the dataset, with potentially insufficient 
information being captured to provide accurate classification. It 
will be possible for entire activities to be missed. 

D. Weak Supervision 

Two algorithms are presented which attempt to populate 
labels to unlabeled feature vectors using pairwise Euclidean 
distance.  The initial setup of both algorithms is the same, with 
a 561-width matrix containing all feature vectors stored in   
and labels stored in   with           6 . All labels in   will 
initially be 0 except those collected using experience sampling. 

The variable K is used by algorithm 1, it controls the 
number of times the algorithm repeats. As the amount of 
processing is exponentially increased for each incrementally 
higher value of K so the values will be limited to between 1 
and 3. 

Algorithm 1 presents the methodology for the single label 
based propagation.  After the experience sampling has gathered 
labels, the algorithm runs through each of the experience 
sampling labelled feature vectors and finds the single closest 
unlabeled feature vector to each. Each of these single vectors is 
given the same label as the experience sampling feature vector, 
effectively doubling the number of labelled feature vectors. 
This process is then repeated K times, however, for each 
successive run, the original labelled feature vectors are 
removed. For example, the system is looking for the closest 

variables to the experience sampling points on the first run, 
these experience sampling points are then removed for the 
second run. Without this step, it will just re-find the original 
points. 

 
For the second algorithm, the variable M is used to control 

the number of similar feature vectors to look at for comparison.  
The algorithm aggregates the labels gathered by experience 
sampling into groups, for example, all feature vectors labelled 
as walking will be grouped together. The average of each of 
feature vectors in each group is taken, these averages are then 
compared against the unlabeled data points looking for the M 
closest. These M data points are then given the label of the 
closest group. 

E. Classification 

As Support Vector Machines have been shown to perform 
well on activity data, classification will be achieved through 
the use of an error-correcting output codes support vector 
machine (ECOC SVM). An ECOC SVM as it allows an SVM 
to act as a multi-class classifier. This is advantageous for 
activity data as generally there are multiple activities to 
classify. 

This is achieved by providing an ensemble of binary one vs 
one classifiers [10]. The error-correcting codes output by the 
ECOC SVM means that although there are extra data overhead, 
these codes can help the system recover from errors such as 
poor input features or a flawed training algorithm, something 
which may be appropriate for weak supervision techniques 
since noisy labels are inevitable. 

Decision tree based ensemble methods have also been used 
successfully for activity recognition, again the ensemble 
method has the capability for multi-class classification. In this 
case, a Tree Bagger will be used. 

Each of these classifiers will be tested on the fully 
supervised data and the more successful of these two selected. 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏 Single label propagation 

 : 𝑥𝑃𝑜𝑖𝑛𝑡𝑠 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑌 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑛𝑜𝑡 𝑧𝑒𝑟𝑜 
2: 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 𝑖𝑛 𝑥𝑃𝑜𝑖𝑛𝑡𝑠 
3:         𝑐𝐿𝑎𝑏𝑒𝑙 = 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑌 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑥 
4:         𝑐𝐹𝑒𝑎𝑡𝑢𝑟𝑒 = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑋 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑥 
5:         𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑧 𝑖𝑛 𝑋 
6:                𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑧   
=            𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑋 𝑧  
7:        𝑒𝑛𝑑 
8:        𝑙𝑜𝑤𝑒𝑠𝑡 = min 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑑𝑒𝑥 𝑥 
9:        𝑌 𝑙𝑜𝑤𝑒𝑠𝑡 = 𝑐𝐿𝑎𝑏𝑒𝑙 
  : 𝑒𝑛𝑑 
  : 𝐹𝑜𝑟 𝑥 =  :𝐾 

 3:        𝑥𝑃𝑜𝑖𝑛𝑡𝑠
= 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑌 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑛𝑜𝑡 𝑧𝑒𝑟𝑜 

 6: 𝑒𝑛𝑑 

 2:        temp = xPoints 

 4:        𝑅𝑒𝑚𝑜𝑣𝑒 𝑡𝑒𝑚𝑝 𝑓𝑟𝑜𝑚 𝑥𝑃𝑜𝑖𝑛𝑡𝑠  
 5:        𝑅𝑒𝑝𝑒𝑎𝑡 𝑙𝑖𝑛𝑒𝑠 2 𝑡𝑜    𝑤𝑖𝑡ℎ 𝑛𝑒𝑤 𝑥𝑃𝑜𝑖𝑛𝑡𝑠  
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IV. EXPERIMENTS 

The following experiments will first evaluate the 
performance of standard supervised classification with full 
ground truth. The amount of data available to the classifier will 
then be restricted via experience sampling and finally new 
labels introduced through weak supervision methods. 

A. Supervised 

Standard supervised learning was performed by using the 
pre-computed features with all the provided activity labels. 

The results shown in Table I provide a baseline for weakly 
supervised performance to be compared against, with an 
overall average of 96.4% the ECOC SVM performed 
significantly better than the Tree Baggers average of 90.1%. As 
it performs better then ECOC SVM will be used for any future 
experiments. 

TABLE I. SUPERVISED CLASSIFIER COMPARISON 

 Accuracy 

Activity ECOC SVM Tree Bagger 

Walking 99.4% 94.0% 

Walking upstairs 96.8% 86.8% 

Walking downstairs 96.4% 82.1% 

Sitting 89.2% 88.6% 

Standing 96.9% 89.2% 

Laying 99.8% 99.8% 

TABLE II. EXPERIENCE SAMPLING WINDOW LENGTH 

Sampling window 

(min) 
0 1 3 5 10 15 20 30 60 

Number of labels 7415 322 107 64 32 21 16 10 5 

 
Fig. 1. Experience sampling performance. 

B. Weakly Supervised 

1) Randomisation of experience sampling requests 
To provide as unbiased view of the data as possible, each of 

the experience sampling requests will be randomly moved 
forward or backwards by a random number of seconds. 

 A seed value of 1 is being used to ensure that these results 
are repeatable and that on each experiment is being provided 
with the same annotations. 

2) Experience Sampling Only 
Table II shows the number of labels found through 

experience sampling for each length of sampling window. 
Even a one minute interval significantly reduces the number of 
labels available in the training set, any feature vector which has 
not been assigned a label is discarded as it is not usable by a 
supervised classifier. 

Fig. 1 shows that the experience sampling method alone 
provides excellent results at low window lengths but once the 
sampling window exceeds 5 minutes performance is 
significantly reduced. 

3) K and M values 
Experiments were performed to find the most appropriate 

values for the K and M values, these will be performed on the 
1, 10 and 20 minute experience sampling windows. These 
times have been selected as they provide data about both short 
and medium length sample windows. The longer windows are 
not being used due to dataset limitations. 

The bigger the values the more labels will be generated, 
however, this could also result in an increased number of 
incorrect labels compared to ground truth. 

a) Algorithm 1 

We can see from Table III that increasing the K-value does 
increase the number of new labels generated, however, the 
bigger the K-value used, the higher chance that incorrect labels 
will be created. 

A K-value of three will be used for the remainder of the 
experiment. This is due to it having significantly more labels 
than the other K-values, while only having a slight reduction in 
quality. K-values of above 3 will likely generate more labels, 
however, the performance impact is unacceptably high. 
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𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟐 Unique aggregate label propagation 

 : 𝑥𝐿𝑎𝑏𝑒𝑙𝑠
= 2
− 𝑤𝑖𝑑𝑡ℎ 𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑎𝑐ℎ 𝑘𝑛𝑜𝑤𝑛 𝑙𝑎𝑏𝑒𝑙 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑌 
2: 𝑢𝐿𝑎𝑏𝑒𝑙𝑠 = 𝑢𝑛𝑖𝑞𝑢𝑒 𝑙𝑎𝑏𝑒𝑙𝑠 𝑖𝑛 𝑥𝐿𝑎𝑏𝑒𝑙𝑠 
3: 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 𝑖𝑛 𝑢𝐿𝑎𝑏𝑒𝑙𝑠 
4:         𝑡𝐿𝑎𝑏𝑒𝑙 = 𝑙𝑎𝑏𝑒𝑙 𝑖𝑛 𝑥𝐿𝑎𝑏𝑒𝑙𝑠 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑥 
5:         𝑡𝑒𝑚𝑝 = 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 𝑜𝑓 𝑌 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 𝑡𝐿𝑎𝑏𝑒𝑙 
6:        𝑡𝑒𝑚𝑝2 = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑛 𝑋 𝑤𝑖𝑡ℎ 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 𝑖𝑛 𝑡𝑒𝑚𝑝 
7:        𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐴𝑣𝑔 = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑡𝑒𝑚𝑝2 
8:        𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑧 𝑖𝑛 𝑋 
9:                𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑧 
= 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐴𝑣𝑔 𝑎𝑛𝑑 𝑋 𝑧  
  :        𝑒𝑛𝑑 
  :        𝑐𝑜𝑢𝑛𝑡𝑒𝑟 =   
 2:        𝑤ℎ𝑖𝑙𝑒 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≤ 𝑀  
 3:                𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 

= min 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑑𝑒𝑥 𝑥 
 4:        𝑒𝑛𝑑 
 5:        𝑌 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 = 𝑡𝐿𝑎𝑏𝑒𝑙 
 6: 𝑒𝑛𝑑 
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TABLE III. K-VALUE TUNING ALGORITHM 1 

1 Minute Sampling Window 

K value 1 2 3 

New labels 1274 2547 5094 

Percent Correct 96.8% 94.8% 91.7% 

10 Minute Sampling Window 

K value 1 2 3 

New labels 128 256 512 

Percent Correct 97.8% 95.3% 93.4% 

20 Minute Sampling Window 

K value 1 2 3 

New labels 64 128 256 

Percent Correct 98.4% 96.9% 95.2% 

TABLE IV. M-VALUE TUNING ALGORITHM 2 

1 Minute Sampling Window 

M value 10 20 30 

New labels 378 434 491 

Percent Correct 98.8% 98.1% 97.1% 

10 Minute Sampling Window 

M value 10 20 30 

New labels 85 144 169 

Percent Correct 97.0% 94.7% 90.4% 

20 Minute Sampling Window 

M value 10 20 30 

New labels 69 127 186 

Percent Correct 96.2% 95.9% 94.8% 

 
Fig. 2. Classifier performance. 

b) Algorithm 2 

Based on the results in Table IV, an M value of 20 is 
selected for Algorithm 2. The reduction in label quality 
between the values of 10 and 20 is insignificant compared to 
between 20 and 30. The value of 20 also provides substantially 
more labels than 10, which will be useful to the classifier. 

4) Classifier Results 
Fig. 2 shows the overall classification accuracy for each 

experience sampling window length. The graph shows that as 
the sampling window length increases above 5 minutes the 
classifier accuracy of experience sampling starts to decrease 
quickly whereas, the two weakly supervised algorithms 
decrease much slower until the 30 minute mark. Both 

algorithms allow the experience sampling window to be 
increased to 20 minutes while maintaining an accuracy of 
above 70%. Algorithm 1 performs better overall, but not 
significantly. After the 20 minute window accuracy sharply 
decreases for both Algorithm 1 and 2. This is possibly due to 
the experience sampling window being so long that entire 
activities are being missed. 

Table V shows the classifier accuracy for individual 
activities in three different sampling window lengths. The one 
minute sampling length provides the closest comparison to 
fully supervised, while lengths greater than 20 minutes run into 
the limitations of the dataset. For each of these window lengths 
we can see that certain activities appear to be affected 
differently based on the length of the sampling window. 
Walking, standing and laying do not appear to be significantly 
impacted even with a sampling length of 20 minutes. However, 
walking upstairs, walking downstairs and sitting are all 
reduced. Walking upstairs is affected the worst with a 
significant reduction from 1 to 20 minute sampling length. It 
could be that certain activities need more data for accurate 
classification or the dataset could be unbalanced. 

TABLE V. PER ACTIVITY CLASSIFIER PERFORMANCE 

1 Minute Sampling Window 

Activity 
Walki

ng 

Walkin

g 

Upstair

s 

Walking 

Downstair

s 

Sittin

g 

Standin

g 

Layin

g 

Experience 

sampling 
98.2% 91.5% 84.2% 81.9% 87.1% 99.8% 

Algorithm 

1 
95.8% 94.4% 88.2% 79.9% 88.2% 99.8% 

Algorithm 

2 
97.9% 90.4% 84.8% 79.0% 87.4% 99.8% 

10 Minute Sampling Window 

Activity 
Walki

ng 

Walkin

g 

Upstair

s 

Walking 

Downstair

s 

Sittin

g 

Standin

g 

Layin

g 

Experience 

sampling 
91.6% 52.8% 55.4% 19.3% 95.0% 96.6% 

Algorithm 

1 
94.4% 70.2% 70.8% 30.2% 97.2% 95.6% 

Algorithm 

2 
87.4% 58.9% 76.3% 46.5% 91.6% 97.2% 

20 Minute Sampling Window 

Activity 
Walki

ng 

Walkin

g 

Upstair

s 

Walking 

Downstair

s 

Sittin

g 

Standin

g 

Layin

g 

Experience 

sampling 

only 

95.5% 5.3% 41.9% 44.1% 84.9% 94.9% 

Algorithm 

1 
93.3% 38.9% 71.1% 55.8% 83.3% 94.9% 

Algorithm 

2 
92.8% 18.8% 47.3% 75.3% 68.4% 88.8% 

Overall, the two algorithms appear to be effective at 
increasing the classifier accuracy of the worst performing 
activities. With algorithm 1 increasing the accuracy of walking 
upstairs and walking downstairs by 33.6% and 29.2% 
respectively at the 20 minute experience sampling window. 

5) Performance results 
Although Algorithm 2 has not achieved the classification 

results that Algorithm 1 did, it is significantly faster as shown 
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in Fig. 3. Although in recent years smart devices have greatly 
improved in terms of battery life and compute performance 
[11], they would be the ideal platform for an activity 
recognition system and anything which reduces the power 
impact of these systems would be advantageous. 

V. DISCUSSION 

While these methods do not provide a completely 
unobtrusive system, they do maintain reasonable levels of 
classification accuracy even with significant reductions in the 
number of labelled feature vectors. 

Limitations of this work include entire activities can be 
missed when the experience sampling window becomes too 
long. A potential solution is to provide a method of moving the 
request timings to detect more valuable data. These methods 
could also be used to increase the experience sampling request 
timings if the data to be collected provides limited new 
information. This could result in a system with fewer requests 
and a higher level of user acceptance. 

Another limitation of this work is the more activities in the 
time series there is an increased likelihood that noisy labels 
will be produced. A potential solution is to provide multiple 
methods of validating populated labels rather than just their 
distance in the feature space. 

VI. CONCLUSION AND FUTURE WORK 

As shown, experience sampling is a potentially viable 
method for collecting activity data. Classifiers perform 
surprisingly well when presented with minimal training 
samples, allowing a 10-minute experience sampling window to 
provide 70% classifier accuracy. 

 
Fig. 3. Algorithm compute performance. 

The weak supervision techniques introduced in this paper 
allows this window to be effectively doubled, with classifier 
accuracy of 74% even with a 20-minute sampling window. 

However, above this window length generally results in 
problems as entire activities are missed and the limitations of 
the dataset are pushed. The problem is shown in both the 
experience sampling labels and the weak supervision labels. 

A potential issue with the experience sampling method is 
that when the user is polled for data they will be required to 
make movements in order to put the annotation into a device. 
As this experiment is mocked up on already collected data 
there is no way to simulate this, however a potential solution is 
to stop collecting data from sensors at a fixed time before 
alerting the user and begin collecting after a period has expired. 
Another solution to this issue could be to ask what activity a 
user was performing a predefined number of seconds ago, e.g. 
what activity did you perform 30 seconds ago. Another issue is 
that people will be performing movements with the device in 
different orientations, for example, walking while changing a 
song. 

Future work will be on determining the ideal time for 
asking the user for input other than just timing, for example, an 
online classifier which attempts to discover when an activity 
that the system does not recognize is being performed. 
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