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Abstract — The holy grail of tracking people indoors is being able to locate them
when they are not carrying any wireless tracking devices. The aim is to be able to track
people just through their physical body interfering with a standard wireless network
that would be in most peoples home. The human body contains about 70% water which
attenuates the wireless signal reacting as an absorber. The changes in the signal along
with prior fingerprinting of a physical location allow identification of a person’s location.
This paper is focused on taking the principle of Device-free Passive Localisation (DfPL)
and applying it to be able to actually distinguish if there is more than one person in
the environment. In order to solve this problem, we tested classifiers such as Naive
Bayes, TreeBagger in order to detect movement based on changes in the wireless signal

strength.
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I INTRODUCTION

Indoor location estimation is a crucial component
in many applications. Location estimation is im-
portant for many scenarios such as asset track-
ing, health care, location based network access,
games, manufacturing, government, logistics, in-
dustry, shopping, security, tour guides, and con-
ference guides. Various localisation systems that
can estimate the position of a person or object ex-
ist. Ome can select the system which offers the
accuracy and precision required for a specific ap-
plication.

Indoor localisation systems can be classified
into active and passive systems. Location track-
ing techniques for active localisation require the
tracked people to participate actively. The sec-
ond class known as passive localisation is based
on monitoring changes of characteristics depen-
dent on peoples presence in an environment. By
participating actively, we mean that a person car-
ries an electronic device which sends information
to a positioning system helping it to infer that per-

son’s position. In some cases the electronic devices
can also process recorded data and send the results
for further processing to an application server run-
ning the localisation algorithm. In the passive lo-
calisation case, the position is estimated based on
the variance of a measured signal or video process.
Thus the tracked person is not carrying any elec-
tronic devices to infer the user’s position.

This work is focused on solving an extremely dif-
ficult task that is multi-occupancy detection in a
passive localisation scenario. Thus the following
sections will analyse one of the techniques used to
deploy indoor passive localisation systems. Vari-
ous DfPL systems will be presented as an introduc-
tion to indoor passive localisation. Various tech-
niques such as Ultra-wideband (UWB), Physical
Contact, Differential Air Pressure, Computer Vi-
sion, and Device-free Passive Localisation (DfPL)
have been used in indoor passive localisation.

Ultra-wideband (UWB) is one of the first tech-
niques used to deploy passive localisation systems
[1]. Through-the-wall surveillance or through-wall



imaging (TWTI) are used to denote UWB passive
systems [2,3]. This technique has been recently
used for both static and motion detection. UWB
passive localisation is considered to be an exten-
sion to a technique called radio tomographic imag-
ing due to its similarity to the medical tomographic
imaging. Through-wall imaging refers to the abil-
ity of detecting and monitoring objects or people
through buildings walls. This can be very useful to
law enforcement agencies and can have many ap-
plications in military and civil scenarios [4]. UWB
has the advantage of being able to penetrate walls.
Various implementations of UWB technique have
been proposed. A UWB system has the following
two main components: transmitters and receivers.
Short pulses are sent by a pulse generator via a
horn antenna [5]. The receivers wait and monitor
echoes from various objects or people.

TileTrack represents a low cost two-dimensional
location estimation system based on physical con-
tact [6]. Changes in the capacitance between
transmitting and receiving electrodes (plate elec-
trodes or wire electrodes) are monitored. The sys-
tem is based on 9 floor tiles with one transmitting
electrode for each tile. Each tile is 60 cm by 60 cm
square-shaped made from thick chip-board with
thin steel coating. The prototype used to deploy
the TileTrack technique has a square tracking area
with a size of 3 x 3 tiles.

AirBus estimates location based on indoors air-
flow disruption caused by human movement [7].
An air pressure sensor is placed within the central
heating, ventilation, and air conditioning (HVAC)
unit. The sensor detects pressure variations. Air-
Bus can correctly identify an open or closed door
80% of the cases with HVAC in operation and 68%
with HVAC unit switched off.

Computer vision can be considered as a DfPL
system because the tracked people are not carry-
ing any electronic devices or tags [8]. The Ea-
syLiving project [9] is a computer vision based
system which aims to transform any environment
in a smart environment dependent on location in-
formation. Possible applications include switching
on/off devices near to the users location, monitor-
ing peoples behaviour and many others. The sys-
tem architecture consists of three PCs (Personal
Computers) and two sets of colour cameras. Each
camera is connected to one PC, while the third
PC is used for running the person tracker algo-
rithms. Video processing algorithms are used to
separate and track people. The system was tested
with a maximum of three people in the environ-
ment. The possibility of obstructions depends on
the behaviour and the number of persons.

The Device-free Passive Localisation (DfPL)
[10,11] is based on monitoring the variances of the
signal strength in a wireless network. The human

body contains about 70% water and it is known
that waters resonance frequency is 2.4 GHz. The
frequency of the most common wireless networks is
2.4 GHZ, thus the human body behaves as an ab-
sorber attenuating the wireless signal [2,4,12-15].
This technique is the focus of our research and the
remainder of the paper is based on DfPL using
Wireless Sensor Networks (WSNs).

The paper is organised as follows: Section II in-
troduces various classifiers, Section III presents the
test bed and motion detection technique using the
classifiers introduced in Section II. Section IV con-
cludes the paper.

II CLASSIFIERS

The majority of applications that can be solved
with classifiers and neural networks fall into the
following four classes: prediction, classification,
data association and data conceptualisation [16-
18]. Prediction can be used to analyse stocks in
the market, identify risks of various diseases in and
predict location. Classification is used to identify
patterns in various applications. From the locali-
sation point of view classification can be used to
identify patterns that can improve location detec-
tion or identify a location with a unique signature
in a radio map fingerprint. Data association refers
to data classification and detection of data contain-
ing errors. Data conceptualisation analyses inputs
in order to group relationships. The most common
example used nowadays in e-commerce is identify-
ing people from a database that will most likely
buy a particular product.

The focus of this paper is classification of wire-
less signal strength in order to detect motion in a
DfPL scenario. A description of various classifiers
is presented in the following subsections. The clas-
sifiers include Naive Bayes and TreeBagger. Sec-
tion IIT presents the implementation of these clas-
sifiers with results. Future focus will implement
more complex classifiers in order to solve the ex-
tremely difficult task that is multi-occupancy de-
tection in a passive localisation scenario.

a) Naive Bayes

Naive Bayes is a simple probabilistic classifier
based on Bayes Theorem which implements strong
(naive) independence assumptions [19-22]. How-
ever it appears to work even when the features are
not independent of one another.

The Naive Bayes classifier has two steps: train-
ing and prediction [23]. Similar to other classifi-
cation methods in the training phase, Naive Bayes
uses training vectors, pairs of inputs-outputs, to
estimate the parameters of probability distribu-
tions. The prediction step uses unseen data and
computes the posterior probabilities based on the
parameters obtained in the training phase. The



posterior probabilities are used to classify inputs
belonging to each class.

The independence assumptions allow the clas-
sifier to compute the parameters for an accurate
classification using smaller training samples com-
pared to other classifiers. This has been shown
to work even for features which are not indepen-
dent of one another. The Naive Bayes classifier
gives the possibility of using various distributions
depending on features that needs to be identified.
The following distributions are supported: normal
(Gaussian), kernel, multinomial and multinomial
distributions. We will not describe each distribu-
tion as this is not the focus of this paper. The
input vectors we are classifying follow a normal
(Gaussian) distribution thus it is not necessary to
detail each distribution and we will focus on the
implementation of the Naive Bayes classifier for a
normal (Gaussian) distribution.

The probability model for a classifier is given by:

p(C|Fy, ..., Fy) (1)

where, C represents an dependent class and
Fi, ..., F, are the features variables. The Naive
Bayes classifier implements Bayes theorem given
by:

p(C)p(Fl, ) Fn‘c)
p(Fl,...,Fn) (2)

which means that the posterior probabilities are
computed as follows:

p(C‘Flv 7Fn) =

prior X likelihood

(3)

One can notice that the denominator does not
depend on the class variable C, thus it is constant
as the features values are known. In practice we
only need to consider the numerator of Equation 3
which is equivalent to the joint probability model
expressed by:

posterior = -
evidence

p(C, F1,..., F,) (4)

The joint probability model can be written:
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Based on Equation 5 we can now rewrite condi-
tional distribution over the class variable C which
can be expressed as:
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If the data to be classified is a continuous input
vector x, then then class distribution is a Gaussian
distribution. The input vector is segmented into
classes, and then we compute the mean and the
variance of x in each class c. The mean value is
usually denote by u. and the variance of the inputs
is denoted by 2. The probabilities for the values
in the input vector are computed as follows [19]:
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p(zle) = Nereh (7)

b) TreeBagger

In statistics and machine learning ensemble meth-
ods are used to obtain better prediction perfor-
mance based on various models. Fast algorithms
such as decision trees, for example TreeBagger, are
used with ensembles. However slower algorithms
can benefit from ensembles as well.

TreeBagger can be used to solve various prob-
lems such as classifying radar returns for Iono-
sphere data, insurance risk rating for car imports
etc [23]. It can be used in classification and re-
gression problems. It is known that TreeBagger
bags an ensemble of decision trees for either clas-
sification or regression. The method is also known
as bootstrap aggregation for ensemble of decision
trees [24].

In the classification case, TreeBagger uses an in-
put vector for training. A replica of the input vec-
tor is built, known as a bootstrap replica. Every
tree in the ensemble is grown on the independently
drawn bootstrap replica of input data. Observa-
tions for unseen data, not included in the replica
of input vector, are known as ”out of bag” for this
tree. An average from individual trees is computed
and then used to predict the unseen data. The
prediction error is determined by computing the
average of the predictions over the entire ensem-
ble and then comparing this average with the true
observation values.

The bootstrap aggregation technique called bag-
ging is a special case of a model averaging ap-
proach. Having a training set X of size n, bagging
generates m new training sets X;, each with of size
n > n, by sampling data from X uniformly and
with replacement [21]. Sampling with replacement
refers to samples where an element may appear
multiple times in the one sample. In the case of
n' = n and if the number of values in X is large
it is expected to have approximately 60% of the



unique examples of X, the remainder being du-
plicates. A sample with these characteristics is
known as a bootstrap sample. The m training sets
are fitted using the m bootstrap sample obtained
above and combined in the regression case by av-
eraging the output or in the classification case by
voting.

III TEST BED AND RESULTS

This section presents the experiment we conducted
in order to detect motion in a DfPL scenario. First,
the test bed shown in Figure 1 will be described
and then Naive Bayes and TreeBagger classifiers
will be used to analyse/classify motion. Finally,
we compare the classification errors in Table 1.

Fig. 1: The test bed with bidirectional link selected.

We have collected the data in a room of size 3.6m
by 3.4m. A Wireless Sensor Network (WSN) based
on four IEEE 802.14.5 Java Sun SPOT nodes and
a base station was deployed in the environment.
The data was recorded using a single thread col-
lection over a period of approximately two hours.
We use two data sets containing 800 values (see
Figure 2). The first data set represents the train-
ing data while the second one is the test data. The
nodes are broadcasting messages every 200 ms.
When the messages are received, Received Signal
Strength Indicator (RSSI) is added and then the
messages are forwarded to the base station. How-
ever, working with a single collection thread can
cause delays as the base station collects data from
one node at a time.

In the case of four nodes the collection speed
is good considering that we collect data from 12
links. For larger test beds multiple collection
threads or more than one base station will improve
the collection speed.

We have selected one bidirectional link between
nodes 6C78 and 2AAC as shown in Figure 1. Both
links are considered to be independent. Figure
2 shows the raw data collected from the selected
links.

Both data sets are smoothed in order to filter
noise. The derivative of the signal is used to nor-
malise the data. Figure 3 shows the smoothing
and derivative on one of the links. Data from the

second link is processed in a similar manner. It is
necessary to normalise the data in order to train
and use classifiers.
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Fig. 2: Raw data from two selected links.
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Fig. 3: Smoothing and derivative of one link.

Figure 4 shows the threshold selection consider-
ing the normalised data. The value used in this
case was =2. Any other value above or below this
threshold is considered an event which will be clas-
sified as motion. The threshold is dependent on
the environment. In very noisy environments we
need to modify this threshold. Thus a calibration
depending on the level of noise in the environment
is required.
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Fig. 4: Threshold selection on the derivative of the data.

We have used existent Matlab functions to anal-
yse the two classifiers presented in Section II,
Naive Bayes and TreeBagger. More details on
how one can use these functions and parameters
required can be found in [23].

Figure 5 shows targets vector and predicted
classes using Naive Bayes with a Gaussian Distri-
bution. One link is used to train the classifiers
while the data recorded on the second link rep-
resents the test vector. The targets vector is ob-



tained by analysing the data based on the thresh-
old chosen above. Afterwards the test data is fed
to the classifier and the output is compared with
the targets vector. Due to the limited space avail-
able targets and predicted class for Naive Bayes
with kernel distribution and TreeBagger will not
be added. Figure 5 represents just an example on
how a classifier works. As one may notice the data
is classified into two classes: 'No motion’ (value 1)
and "Motion’ (value 2).
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Fig. 5: Targets and predicted classes using Naive Bayes
with a normal (Gaussian distribution).

Table 1 shows the errors obtained in the classifi-
cation process. Considering the number of values
we have used for training, we can conclude that
the classifiers performed well. In the case of Naive
Bayes with a Gaussian distribution the classifica-
tion errors for both the train and test data ware
identical which is a bit unusual. It is common to
obtain a smaller error for the train data compared
to the error obtained for unseen data.

Table 1: Classification errors

Classifier ‘ Error ‘
Train Data | NB Gaussian | 0.0352
NB Kernel 0.0013
TreeBagger | 0.0012
Test Data | NB Gaussian | 0.0352
NB Kernel 0.0075
TreeBagger | 0.0176

The errors were computed based on confusion
matrices defined as:

TP FN

FP TN

where P represents ”positive”, N represents
”negative”, T represents ”true” and F represents
7 false”.

IV CONCLUSION AND FUTURE WORK

In this paper we presented two classifiers that en-
able motion detection in a DfPL scenario. Naive
Bayes with Gaussian and kernel distributions, and
TreeBagger classifiers were used to process wireless
signal strengths in order to detect motion. The re-
sults showed the possibility of using classifiers in

order to detect multi-occupancy using DfPL. We
analysed a bidirectional communication between
two nodes in the deployed WSN. Future work in-
cludes using timestamps in order to decide upon
the number of people in the monitored environ-
ment. A person cannot affect wireless links cover-
ing different areas in the environment at the same
time. Further, more complex classifiers will be
analysed in order to obtain a high accuracy mo-
tion detection.
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