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ABSTRACT
Device mobility is an issue that affects both MANETs and opportunistic networks. While the former employs 
conventional routing techniques with some element of mobility management, opportunistic networking pro-
tocols often use mobility as a means of delivering messages in intermittently connected networks. If nodes 
are able to determine the future locations of other nodes with reasonable accuracy then they could plan 
ahead and take into account and even benefit from such mobility. Location prediction in combination with 
geographic routing has been explored in previous literature. Most of these location prediction schemes have 
made simplistic assumptions about mobility. However more advanced location prediction schemes using 
machine learning techniques have been used for wireless infrastructure networks. These approaches rely 
on the use of infrastructure and are therefore unsuitable for use in opportunistic networks or MANETs. To 
solve the problem of accurately predicting future location in non-infrastructure networks, the authors have 
investigated the prediction of continuous numerical coordinates using artificial neural networks. Simulation 
using three different mobility models representing human mobility has shown an average prediction error of 
less than 1m in normal circumstances.

Opportunistic Neighbour 
Prediction Using an 

Artificial Neural Network
Fraser Cadger, Intelligent Systems Research Centre, University of Ulster, Londonderry, UK

Kevin Curran, Intelligent Systems Research Centre, University of Ulster, Londonderry, UK

Jose Santos, Intelligent Systems Research Centre, University of Ulster, Londonderry, UK

Sandra Moffet, Intelligent Systems Research Centre, University of Ulster, Londonderry, UK

1. INTRODUCTION

Mobile ad-hoc network (MANET) mobility can lead to dynamic behaviour and problems such 
as sub-optimal routing or link breaks caused by nodes changing their position. Potentially inter-
mittent connectivity poses a significant challenge in performing end-to-end routing. Location 
prediction for mobility management has been studied in geographic routing protocols such as 
Chen et al. (2006), Chou et al. (2008), and Son et al. (2004), and has also been used for QoS; 
Shah and Nahrstedt (2002), Stojmenovic et al. (2000), and Cadger et al. (2011). Geographic 
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routing is localized and does not build end-to-end paths instead performing forwarding on a 
hop-by-hop basis. It does however still rely on continuous connectivity to an extent; if a node is 
unable to find a suitable next hop using the forwarding condition then the packet will be dropped. 
Although this is common in conventional infrastructure as well as ad-hoc routing, it is not always 
desirable. Opportunistic networking is a subfield of Delay Tolerant Networking (DTN). DTNs 
acknowledge the possibility that connections between network nodes may be intermittent; both 
in terms of end-to-end connection (which might never be possible using conventional routing) 
or even nodes being completely disconnected from all other devices for large periods of time. 
Existing ad-hoc routing protocols generally rely on continuous connectivity for building paths, 
and are unable to cope with prolonged periods of isolation or intermittent connectivity.

Opportunistic networking is an attempt to provide communications in DTNs and other 
scenarios with intermittent and potentially unpredictable connectivity. Opportunistic networks 
make forwarding decision on a hop-by-hop basis using local information. Where opportunistic 
networking differs from geographic routing is its use of the store-and-forward paradigm; if a node 
does not have any suitable neighbours or is completely disconnected from the network then it 
will store the message until it finds a suitable next hop. Mobility is therefore a significant factor 
in most opportunistic networking protocols, being both the cause of and solution to intermittent 
connectivity. If devices are able to accurately predict where either they or their current neigh-
bours would be at a particular time then they could make forwarding decisions with the aim of 
increasing reception potential or saving energy. In Li and Shatz (2008) a geographic routing 
protocol with some similarities to opportunistic networking allows nodes to favour neighbours 
who are moving towards the destination over static nodes.

Wireless infrastructure networks such as WLANs and cellular networks have employed 
techniques from the field of machine learning such as artificial neural networks (NN) (Capka 
and Boutaba, 2004) and Hidden Markov Models (Prasad and Agrawal, 2010) for location predic-
tion, which boast high accuracy and success. However, all of these works are reliant on either 
WLAN or cellular infrastructure as they formulate location prediction as a discrete classification 
problem in which the aim is to classify a user’s location in terms of proximity to a wireless access 
point or cell and which makes them unsuitable for use in ad-hoc or opportunistic networks. An 
approach which is able to predict locations in a manner which is not dependent on the existence 
of infrastructure and requires knowledge of the area is therefore highly desirable. This led to the 
consideration of continuous regression techniques instead of discrete classification for location 
in prediction in MANETs. In Cadger et al. (2012) three location prediction algorithms were used 
to predict future device locations using MANET mobility traces with a NN performing best. The 
difference between Cadger et al. (2012) and previous works in infrastructure networks such as 
Capka and Boutaba (2004) and Prasad and Agrawal (2010) is that Cadger et al. is able to take 
previous coordinates and use these to predict the future coordinates for that device, without the 
need for any infrastructure or area-specific knowledge which makes it suitable for opportunistic 
networks.

Although the NN algorithm used in Cadger et al. (2012) performed well, these tests were 
performed in Matlab using mobility traces obtained from ns-2 simulations. Instead of receiving 
coordinates from neighbouring nodes and predicting their future location, the algorithm was 
simply provided with a complete series of previous locations. Similarly, the experiment did not 
actually simulate a network itself. Therefore, although the NN algorithm achieved a high level 
of prediction accuracy (average Mean Square Error (MSE) of 0.102) it was not evaluated under 
network conditions. This paper presents an implementation of a NN for predicting neighbour 
locations inside a geographic routing protocol in ns-2. Simulation of mobile networks of vary-
ing sizes using three different mobility scenarios of human movement has shown that a NN 
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trained using data from only one of these mobility models is able to predict neighbouring device 
coordinates often obtaining an average of less than 1m error. The differences between the work 
described in this paper and Cadger et al. (2012) are: in this paper the NN algorithm is running 
within a routing protocol, predictions are made based on location updates sent by neighbouring 
nodes (and are thus susceptible to missing/out of date information), and actual network/mobility 
behaviour is simulated. While this experiment (and Cadger et al. 2012) uses Cartesian coordinates, 
the general approach could be extended to GPS or any other form of numerical coordinates. Thus 
the approach described in this paper is suitable for use with either conventional location systems 
such as GPS or Galileo or localization based on alternative means, and can therefore be used in 
both indoor and outdoor environments depending on the location system.

2. PREVIOUS WORK

Research into opportunistic networking and MANETs have common roots; both are concerned 
with networks in which there is limited or no infrastructure and mobility is a factor. Where 
opportunistic networks and MANETs differ is in their approach to routing. Although MANET 
protocols attempt to offer solutions to the lack of infrastructure and effects of mobility, they 
still largely rely on the traditional networking concept of end-to-end communications in which 
a packet neatly proceeds along a link from source to destination in a timely manner. A few ap-
proaches such as the aforementioned geographic routing do not have any concept of a path at 
all and simply perform forwarding on a hop-by-hop basis. However, such approaches still have 
the common limitation of needing to make a decision immediately; once a packet is under con-
sideration the protocol will attempt to find a suitable next-hop, and if it is unable to do so they 
packet will be dropped altogether. While some QoS-intensive applications rely on maintaining 
a low level of delay, other applications can be considered delay-tolerant and in these instances 
receiving a packet at some point is more important than receiving it within a particular time frame.

These applications therefore require an alternative paradigm in which packets that cannot be 
forwarded immediately do not necessarily have to be dropped. Opportunistic routing, therefore 
aims to approach the issue of routing in infrastructure-less mobile networks from the perspective 
of using mobility and intermittent contact to forward packets in instances where delay is permis-
sible (DTNs). The term opportunistic network (or oppnet) was first introduced in Lilien and Gupta 
et al. (2006) and discussed in Lilien and Kamal et al. (2006) originally in the context of disaster 
recovery networks. However, the idea of opportunistic networking can be characterised as being 
part of the wider area of pervasive/ubiquitous computing and are now being explored outside 
of the area of disaster recovery. A survey of various approaches to opportunistic networking is 
provided in Nguyen and Giordano (2009) who identify three main categories of opportunistic 
routing protocols; context-oblivious, mobility-based, and social context-based. Context-oblivious 
protocols are described as being dependant on flooding techniques and includes protocols that 
utilise both blind (network-wide) and limited flooding (flooding limited based on some criteria) 
(Nguyen and Giordano, 2009). The latter category includes protocols such as epidemic routing 
(Vahdat and Becker, 2000) as well as Spray and Wait (Spyropoulos et al., 2005) and network 
coding schemes (Wang et al., 2005). Mobility-based protocols, use mobility patterns and infor-
mation to make decisions on whether to forward or store a message. Opportunistic protocols that 
can be classified as mobility-based include PRoPHET (Lindgren et al., 2003) which calculates a 
device’s delivery probability based on its previous contact with other nodes and only forwards 
packets to nodes with a higher delivery probability and CAR (Musolesi and Mascolo, 2006) 
which uses Kalman filters to predict context information for message placement. Finally, social 
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context-based protocols attempt to extend mobility-based protocols by taking into account the 
social context responsible for mobility and contact between devices (Nguyen and Giordano, 
2009). Examples of social context-based protocols include HiBOP (Boldrini et al., 2007) and 
Propicman/SpatioTemp (Nguyen et al., 2007; Nguyen and Giordano, 2008).

Research on location prediction in wireless networks can be split into two broad categories; 
research involving MANETs, and research involving wireless infrastructure networks. The 
majority of location prediction research in MANETs has involved some form of geographic (or 
location-aware routing). The earliest work on combining geographic routing with some form of 
location prediction was performed by Chen et al. (2006) who devised a connection time metric 
based on node mobility. A similar metric is that of the motion stability metric proposed in Shah 
and Nahrstedt (2002) which is defined as the degree of mobility variation by a neighbour, with 
the authors believing a large degree of motion instability is a factor in high levels of jitter. Unlike 
Stojmenovic et al. (2000), the method devised in Shah and Nahrstedt (2002) actually predicts 
coordinates through the use of a simple prediction scheme based on two previous coordinates. 
A similar approach to predicting coordinates is used in Stojmenovic et al. (2000). However 
Stojmenovic et al. claims that it does not make assumptions about direction (whereas Shah and 
Nahrstedt (2002) assumes linearity) and works regardless of direction of movement. Despite the 
success of the various MANET location prediction schemes most of them have been somewhat 
basic. This was observed in Cadger et al. (2011) where it was speculated that more advanced 
location prediction schemes (which in turn would yield more accurate results) would lead to 
further improvements in routing performance. More accurate location prediction schemes are 
also desirable as they will allow nodes to have greater awareness of the state (and future state) of 
both themselves and their neighbouring nodes which is particularly important for opportunistic 
networks.

In the other area of location prediction, wireless infrastructure networks have sought the use 
of more advanced location predictions schemes in the form of machine learning algorithms such 
as artificial neural networks (Capka and Boutaba, 2004) and Hidden Markov Models (Prasad ad 
Agrawal, 2010) have. However these approaches are unsuitable for use without infrastructure as 
they formulate the problem of location prediction in terms of predicting location as proximity 
to and usage to network infrastructure. For instance, Prasad and Agrawal (2010) trains a HMM 
algorithm using traces obtained from real WLANs which show the sequence of APs nodes con-
nect to. Once trained, the algorithm can then predict the next AP a node will connect to based on 
its previous connections. Both Capka and Boutaba (2004) and Prasad and Agrawal (2010) are 
examples of classification algorithms. It is however still possible to use classification approaches 
for non-infrastructure networks so long as a discrete list of locations is available. However such 
approaches would be inflexible and imprecise.

As classification-based methods do not appear particularly well-suited to opportunistic 
network location prediction it is perhaps worth considering the possibility of using regression 
to predict future device locations. The use of regression-based machine learning algorithms 
to predict neighbour locations in MANETs was initially proposed in Cadger et al. (2012). In 
Cadger et al., the authors suggested that instead of performing discrete classification, previous 
(non-machine learning) methods of location prediction in which continuous coordinates are the 
output should be modified to use machine learning algorithms. This approach was implemented 
in the form of mobility traces from six ns-2 scenarios of varying mobility which were used as 
the training and testing data to evaluate three machine learning algorithms (decision trees, NN 
and support vector regression) in Matlab. The results indicated that the neural network was the 
overall best performer in terms of accuracy.
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This paper follows on from the work of Cadger et al. (2012) by implementing a NN algorithm 
inside a geographic routing protocol in ns-2. Unlike Cadger et al. in which all testing was done 
using inputs obtained from previous simulations, the experiments detailed in this paper document 
a NN algorithm performing predictions from inside a routing protocol during mobile network 
simulations. Although the work described in this paper still relies on the use of simulation and 
mobility models, it is important to acknowledge that designing and implementing a machine 
learning algorithm for location prediction on mobile devices is a time consuming endeavour. 
Thus, these experiments should serve as a reasonable indication of whether the NN algorithm 
is able to perform in real mobility scenarios and based on this, whether or not to proceed with a 
real-world implementation of the NN algorithm.

3. PREDICTING NEIGHBOUR LOCATIONS 
USING NEURAL NETWORKS

This paper is primarily motivated by two factors; to determine whether NNs can produce results 
similar to Cadger et al. (2012) when applied to a geographic routing protocol in a mobile network 
scenario, and to improve the accuracy of location prediction schemes for use with geographic 
routing protocols in such scenarios. A potential weakness of the NN algorithm is its ‘black box’ 
nature, which means that it is difficult for humans to observe exactly how a NN operates. The 
NN is fed a series of inputs and then outputs the predicted values without a clear means for the 
human to determine how the output was obtained. This makes performance analysis somewhat 
difference, as although the results can be observed it is not obvious how these results were 
achieved. This makes the design, configuration, and adjustment of NNs somewhat difficult and 
there is no universal optimum configuration. The design of NN typically varies depending on 
the task and data, as well as the computational restrictions.

The main adjustable parameters in NN are the number of layers, the number of neurons, and 
the algorithm used to train the network. All NNs contain at least two layers; the input and output 
layers. Most NNs also contain at least one hidden layer. The number of hidden layers is a matter 
of much debate with some believing that more layers increases prediction accuracy, while others 
arguing that one layer is sufficient for most applications. There is no consensus as to optimum 
number of layers, and often the decision depends on the processing power available as more 
layers increases computational cost. Similarly, the number of hidden neurons is also subject to 
some debate. One belief (Sarle, 2012) is that number of hidden neurons can only be determined 
through experimentation with different configurations. If the number is too low then there is a 
risk of predictions being inaccurate and the NN unable to generalise, while too many can still 
lead to poor generalisation as a result of overfitting and high variance (Sarle, 2012). Unlike the 
number of hidden neurons, the number of input layers is typically determined by the number of 
variables to be used as inputs, while the number of output neurons is determined by the number 
of desired outputs. In Cadger et al. (2012) seven inputs were used to represent the current time, 
two most recent coordinates and timestamp, and the previous coordinates and timestamp, while 
there were two outputs (the predicted x and y coordinates). The choice of training algorithm on 
the other hand, is often limited by the availability of algorithms for the particular software used 
to implement the NN, although hardware resources are still a factor. The NN configuration used 
in Cadger et al. (2012) is as follows; one hidden layer, 10 hidden neurons (sigmoid) and the 
training algorithm was Levenburg-Marquadt.
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4. NEURAL NETWORK DESIGN AND IMPLEMENTATION

The NN algorithm was designed and tested using FANN (Li and Shatz, 2008) which is an open-
source C library for creating multilayer perceptron NNs. FANN was chosen for its lightweight 
architecture and desirable performance levels, as well as the fact it is written in C and provides 
a C++ wrapper as ns-2 routing protocols are written in C. Following experimentation with vari-
ous architectures, the following architecture was chosen; 7 input neurons, 15 hidden neurons, 1 
hidden layer, and 2 output neurons the hidden transfer function was sigmoid-symmetric while the 
output transfer function was linear. The iRPROPR (Igel and Husken, 2000) based on the RPROP 
algorithm (Riedmiller and Braun, 1993) was used for training. After testing, the NN algorithm 
was implemented in a routing protocol in ns-2. The protocol used was the Greedy Perimeter 
Stateless Routing algorithm (GPSR) (Karp and Kung, 2000) using code from Kiess (2012). GPSR 
is a hybrid geographic routing algorithm which combines greedy and face routing. However, for 
the purpose of this work the NN implementation was simulated in greedy-only mode. GPSR like 
most other geographic routing protocols uses the beaconing system for discovering (and keeping 
alive) links with other devices and disseminating location information. Prior to implementation 
of the NN algorithm GPSR was modified as in Cadger et al. (2011) to store the two most recent 
(instead of just the current) coordinates and their timestamps. Location prediction is then per-
formed when GPSR is determining which of its neighbours is closest to the destination; instead 
of using the coordinates from the last update, the NN implementation passes the two previous 
locations and their time to the NN prediction method which inputs these parameters along with 
the current time into the NN and then receives the predicted x and y coordinates as outputs.

5. EXPERIMENT CONFIGURATION

Testing was performed by running simulations of the modified GPSR in ns-2 to determine pre-
diction accuracy. A total of 27 simulations were run using three different mobility models and 
three different numbers of nodes as well as varying the beacon interval. The mobility models 
used were Random Waypoint Model (RWP) (Johnson and Maltz, 1996), Reference Point Group 
Mobility (RPGM) (Hong et al., 1999) and an implementation of the Gauss-Markov model (GM) 
(Liang and Haas, 1999) based on Camp et al. (2002). The reasons for selecting these three mobil-
ity models were as follows; RWM and RPGM were the mobility models used in Li and Shatz 
(2008) so in order to compare the results from the ns-2 simulation of the NN algorithm with 
the results from Cadger et al. (2012) it was necessary to use these two mobility models. RWM 
is generally considered a simplistic (and possibly inaccurate) representation of mobility as it is 
purely random and does not take into account either history or surrounding nodes. On the other 
hand, RPGM is based on group mobility (but where individual mobility is also permissible) 
and is therefore considered more realistic. In addition GM was chosen because it allows vary-
ing degrees of randomness and memory-based decisions depending on the value of the alpha 
parameter (Liang and Haas, 1999). Both RPGM and GM trace files for ns-2 were generated 
using the BonnMotion tool (Aschenbruck et al., 2010). While RWP traces were generated using 
the setdest tool that comes with ns-2. For RPGM the probability of a node joining a group was 
set to 0.75, while for GM the update frequency was set to 1, the angle standard deviation 0.5, 
and the speed standard deviation 0.5 (the use of 0.5 for both parameters means that the model is 
balanced in the middle between memoryless random and memory-based mobility).

Traces for all mobility models were produced for 10, 50, and 100 node scenarios and all 
scenarios ran for 600 seconds on an area of size 1500mx400m (with the exception of the GM 
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which ran on 1400mx300m due to a known bug in which traces are produced containing destina-
tions outside of the specified area causing the simulation to crash). Similarly, all scenarios had 
a maximum velocity of 2.5m/s and a maximum pause time of 20s. The maximum velocity of 
2.5m/s is the same as the one used in Cadger et al. (2012) where it was decided to use this value 
as it was deemed the most appropriate maximum speed for ordinary human movement. The 
traffic pattern used for the 50 and 100 node scenarios was as follows; constant bit rate (CBR) 
UDP traffic containing 30 streams with a packet send rate of 0.5. For the 10 node scenario con-
tained 6 streams of CBR traffic with a send rate of 0.5. While it is important to recognize that 
opportunistic networks might not feature constant streams of traffic, the lack of established op-
portunistic networking applications makes the modelling of traffic somewhat difficult. Therefore 
the decision to use CBR traffic was taken as it would allow for the possibility of congestion (at 
some nodes) and the resulting loss of location updates.

An important difference in the experiments detailed in this paper and those described in 
Cadger et al. (2012) is the variation of beacon intervals. Where Cadger et al. uses a beacon 
interval of 0.5s for all scenarios, our experiments use three different beacon periods; 0.5s, 5s 
and 50s. The purpose of this is to determine how the NN algorithm is able to react when faced 
with less frequent updates (particularly in the case of the 50s where there is a large duration 
between updates), as this is a potential issue for real-world opportunistic networks and MANETs 
where beacons may be delayed either unintentionally (as a result of buffering) or intentionally 
(to reduce traffic in a congested network or save energy). Prediction accuracy was estimated as 
follows; a comparison of this prediction with the neighbour’s actual coordinates was made us-
ing the God utility found in ns-2 which allows routing protocols to directly access the simulator 
and retrieve parameters.

6. RESULTS

6.1. Prediction Accuracy

Tables 1, 2, and 3 show the results of the simulations for each of the three mobility models. Note, 
that here error is not MSE and is the actual difference in meters between the predicted and actual 
coordinates. When evaluating these results, it is important to note that there is no obvious ‘state 
of the art’ to compare them with. As Cadger et al. (2012) was the first approach to propose the 
use of machine learning algorithms for predicting continuous coordinates, while there is no data 
on the accuracy of geographic routing location prediction algorithms. Therefore, establishing a 
threshold for prediction accuracy is somewhat difficult.

Results show that the NN algorithm is able to predict future coordinates very accurately and 
with minimal error except for the 50 second beaconing scenarios. Although there is no commonly 
accepted threshold for location prediction error, many systems in the area of localization strive 
for an error of less than 2-3m therefore anything below this should be considered highly desir-

Table 1. Absolute error for all RWM scenarios

Number of Nodes Error (0.5 Seconds) Error (5 Seconds) Error (50 Seconds)

10 0.123 0.53 7.55

50 0.1025 0.484 4.24

100 0.148 0.835 2.45
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able and anything below 1m exceptional. In a total of 18 scenarios out of 27 an absolute error of 
less than 1m was observed. Furthermore an error of >3m was only observed in 5 scenarios and 
all of these instances occurred when beacon duration was set as 50 seconds. For the 0.5s and 
5s scenarios only one of these 18 scenarios contained an error greater than 1m (1.08m recorded 
in RPGM 50 nodes, 5s) and none greater than 2m. This indicates a high degree of accuracy in 
predicting future locations when provided with frequent (0.5s or 5s) location updates, although 
performance does appear to decrease when faced with infrequent (50s updates).

With regards to the 50s beaconing, it is not surprising that the results found in these sce-
narios contain the highest level of error (11.82m is the highest error of any scenario) given the 
large duration between updates. At a maximum velocity of 2.5m/s it is possible that a person 
can move up to 125m from their previously recorded location. Similarly, when the two previous 
updates are received 50s apart it is also more difficult to develop a pattern in these updates than 
if they are received more regularly as it is possible that a person’s mobility will have changed 
significantly between previous updates. However, the 50s scenarios are included as exceptional 
scenarios to demonstrate how the NN algorithm performs when faced with conditions not well-
suited to location prediction. For the 50s scenarios only 4 out of 9 scenarios contained an error 
greater than 2m, however large errors such as 11.82 and 7.55 indicate that the algorithm can 
struggle when faced with irregular updates. It is also possible that the poorer results are also 
due to the training set used and that a training set based on less frequent updates would perform 
better in such a scenario. In general though, the NN algorithm performs reasonably well when 
faced with infrequent updates.

Performance with regards to the different mobility models seems to be fairly balanced. 
Although the NN algorithm was trained using only the 50 node RPGM dataset from Cadger et 
al. (2012) which itself used beacon periods of 0.5s, it is still able to accurately predict (often 
with <1m of error) future device locations in scenarios which use different mobility models, 
number of nodes, and beacon periods. For instance, the lowest prediction error (0.1025m) is 
found in the 50 node RWM scenario with a beacon interval of 0.5s, while the highest prediction 
error (11.82m) is from the 100 node RPGM scenario with a beacon period of 50s. Considering 
number of nodes there again appears to be no obvious ‘perfect’ scenario with the highest and 
second highest level of error occurring at 50 node and 10 node scenarios respectively.

Table 2. Absolute error for all RPGM scenarios

Number of Nodes Error (0.5 Seconds) Error (5 Seconds) Error (50 Seconds)

10 0.155 0.475 1.58

50 0.206 1.08 11.82

100 0.1385 0.727 0.145

Table 3. Absolute error for all GM scenarios

Number of Nodes Error (0.5 Seconds) Error (5 Seconds) Error (50 Seconds)

10 0.182 0.775 3.345

50 0.135 0.397 1.59

100 0.188 0.894 3.97
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6.2. Comparison with Other Results

As previously outlined the only paper to discuss the use of NNs for predicting coordinates is 
Cadger et al. (2012). Tables 4 and 5 show a comparison between the errors in MSE between the 
results obtained from these experiments and the previous results obtained in Cadger et al. It is 
important to note that only the results from the 0.5 beacon interval are considered as Cadger et 
al. only experimented with a beacon interval of 0.5s, and that the results from the GM simula-
tions are excluded as Cadger et al. did not use the GM model.

The purpose of this paper is to ascertain whether the approach (but not necessarily the 
particular implementation) proposed in Cadger et al. (2012) is viable for use in an actual oppor-
tunistic networking routing protocol. Before performing these experiments it was expected that 
the NN algorithm deployed inside the GPSR routing protocol would not achieve as accurate a 
performance as the Matlab analysis in Cadger et al. This was because the Matlab analysis was 
somewhat idealized and was not being performed ‘live’ where changes were actually occurring. 
Another aspect in favour of Cadger et al. was that there was no chance of missing or delayed 
update packets which is always a possibility in simulated and real deployments. Furthermore, 
the Matlab analysis used training and testing data derived from the same overall dataset. Even 
more importantly, testing was performed using a training set from the same scenario (for in-
stance, training and testing for the 10 node RWM scenario was performed using training and 
testing sets from 10 node RWM scenarios) whereas in our simulations only the 50 node RPGM 
training set was used for all scenarios even when the number of nodes and/or mobility model 
differed. Therefore it initially appears surprising that the results from our simulations are in all 
scenarios better than the results from the Matlab analysis of Cadger et al. (2012). However, it 
is important to remember that in Cadger et al., the configuration for the NN is based on the de-
fault configuration in Matlab. On the other hand, the NN algorithm discussed in this paper was 
developed by training and testing different architectures and configurations using the FANN 
application with the best performing configuration being chosen. Although this seems like the 
logical explanation for this NN evaluation outperforming Cadger et al. (2012), it is important 
to remember the purpose of these experiments was not to devise a NN implementation that 

Table 4. Comparison of MSE between results from Cadger et al. (2012) and our simulations for 
RWM scenarios

Number of Nodes MSE from [4] MSE from ns-2 Simulation

10 73 0.054

50 3.31 0.0475

100 0.172 0.076

Table 5. Comparison of MSE between results from Cadger et al. (2012) and our simulations for 
RPGM scenarios

Number of nodes MSE from [4] MSE from ns-2 simulation

10 0.357 0.143

50 0.539 0.1463

100 0.5049 0.145
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outperformed Cadger et al. but instead to prove that such an NN implementation was viable for 
use inside an opportunistic networking protocol. The fact that the specific configuration used 
in this paper outperformed Cadger et al. is further proof that the general concept of using a NN 
algorithm for predicting continuous coordinates is a viable and desirable approach for perform-
ing location prediction in opportunistic networks or MANETs. Overall, all these results indicate 
that a 2-layer NN algorithm with 15 hidden neurons is able to accurately predict future device 
locations in various scenarios of human mobility where number of nodes, mobility model, and 
beacon interval are all varied. That the same NN architecture trained on a dataset from one of 
these scenarios (50 nodes RPGM with 0.5s beacon interval) was able to perform such accurate 
predictions in a wide variety of different scenarios confirms that the NN prediction approach 
proposed in Cadger et al. (2012) is suitable for use in mobile network location prediction.

7. CONCLUSION

The primary contribution of this paper is to demonstrate the suitability of an artificial neural 
network implemented inside an ad-hoc routing protocol for predicting human mobility in oppor-
tunistic network scenarios. This work builds on that of Cadger et al. (2012) where three machine 
learning algorithms were evaluated for their ability to accurately predict future device locations 
based on mobility traces obtained from mobile network simulations. In Cadger et al. the neural 
network was overall the best performer in terms of prediction accuracy, and this work therefore 
focuses on further evaluating its potential for use in mobile network location prediction. This 
paper illustrates the process of implementing a two-layer feedforward NN algorithm created 
with the FANN library inside the GPSR geographic routing protocol in ns-2. Results showing 
the accuracy of the NN algorithm’s predictions in actual simulations are then presented. The 
average prediction error from all scenarios is only 1.88m. However it is important to recognize 
that this figure contains the errors from the 50s scenario which are significantly higher than the 
other scenarios’ errors, and if the results from the 50s scenarios are excluded the average is less 
than 1m of error. Similarly, a comparison of the results from the RPGM and RWM simulations 
with the corresponding results from Cadger et al. (2012) showed that the NN algorithm simulated 
in ns-2 actually performed better than the NN algorithm analyzed in Matlab.

Even when the duration, number of nodes, and mobility model was changed the NN al-
gorithm was still able to predict neighbors’ locations with a very high degree of accuracy. The 
paper also discussed possible future applications of the results most of which were related to 
developing an opportunistic networking routing protocol based on NN location prediction. It is 
the intention of the authors to pursue the development of such a protocol and also to implement 
the NN prediction algorithm on Android smartphones in order to assess its performance on re-
alistic mobile hardware. Overall, these results are very promising in particular the consistently 
high prediction accuracy of the NN algorithm in a variety of differing mobile scenarios. These 
results are applicable to a wide variety of areas where mobility and location are important factors.
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