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Abstract—We propose a novel supervised technique for
blood vessel segmentation in retinal images based on echo state
networks. Retinal vessel segmentation is widely used for
numerous clinical purposes such as the detection of various
cardiovascular and ophthalmologic diseases. A large number of
retinal vessel segmentation methods have been reported, yet
achieving accurate and efficient vessel segmentation still
remains a challenge. Recently, reservoir computing has drawn
much attention as a new computing framework based on
recurrent neural networks. The Echo State Network (ESN),
which uses neural nodes as the computing elements of the
recurrent network, represents one of the efficient learning
models of reservoir computing. This paper investigates the
viability of echo state networks for blood vessel segmentation in
retinal images. Initial image features are projected onto the echo
state network reservoir which maps them, through its internal
nodes activations, into a new set of features to be classified into
vessel or non-vessel by the echo state network readout which
consists, in the proposed approach, of a multi-layer perceptron.
Experimental results on the publicly available DRIVE dataset,
commonly used in retinal vessel segmentation research,
demonstrate the ability of the proposed method in achieving
promising performance results in terms of both segmentation
accuracy and efficiency.

Keywords—echo state network; retinal images; vessel
segmentation; pixel classification; feature extraction

1. INTRODUCTION

Blood vessel segmentation in retinal images is an
important stage in computer based retinal image analysis and
diagnosis of retinal diseases. It is useful for numerous clinical
purposes such diagnosis, screening and treatment of several
pathologies like hypertension, diabetes, cardiovascular and
ophthalmologic diseases [1], computer-assisted laser surgery
[1] and other retina components identification such as the
optic disc and the fovea [2]. It is also useful for temporal
registration of retinal images. The integration of information
from registered images serves for automatic monitoring of the
progression of certain diseases [3]. The vascular tree
extracted from a retinal image is also used for biometric
identification [4].
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With the growing importance of vessel segmentation in
retinal images and manual delineation of the vessels being
costly in terms of effort and time, automatic accurate and
efficient segmentation methods of retinal vessels are needed.
Since the early work of Chaudhuri et al. in 1989 [5], a large
number of automated methods have been reported in
literature. Recent surveys of these methods can be found in
[1], [6]-[8]. Based on the training mode, the existing methods
can be classified into supervised and unsupervised methods.
Usually the supervised methods result in higher segmentation
accuracy than their unsupervised counterparts. However, the
most reported supervised methods (see Section IT) need a long
processing time due to the applied pre- and post-processing
operations. In this paper, we propose an efficient retinal
vessel segmentation method based on ESN. We show that this
technique can achieve comparable segmentation accuracy
with state-of-the-art methods without using any pre- or post-
processing and outperforms all of them in terms of processing
time.

Recently, the concept of reservoir computing (RC) has
been used to simplify the training of recurrent neural
networks (RNN) [9], [10]. The two main realisations of RC
are the Echo State Network, proposed by Herbert Jaeger [11],
and the Liquid State Machine proposed by Maass et al. [12].
In this paper, we focus on the former type which consists of
a large recurrent neural network whose connection weights
are randomly generated and is followed by a readout layer
which is trained using commonly known linear regression
algorithms. The ESN attracted much attention due to its
simple computational model that has been used successfully
in many application tasks [13]-[18].

In this paper, we carry out an investigation of the viability
of an ESN based framework for blood vessel segmentation
in retinal fundus images. An ESN consisting of a reservoir
and a simple feedforward artificial neural network has been
designed. While the reservoir serves as an image feature
extractor of the input image features, the feedforward neural
network is used as the readout function of the ESN, which
classifies the image features which are captured by the output
nodes of the reservoir. The obtained segmentation is
thoroughly evaluated using objective segmentation quality



metrics such as accuracy, specificity and sensitivity.
Experiments on the widely used DRIVE (Digital Retinal
Images for Vesse Extraction) dataset show promising results
and demonstrate that the proposed Echo State Network
based approach can achieve competitive segmentation
performance in terms of both accuracy as well as efficiency
compared with related state-of-the-art methods. To the best
of our knowledge, this is the first application of echo state
networks for blood vessel segmentation in retinal images.

The rest of the paper is organized as follows: A review of
the related work is presented in Section II while Section III
presents a description of the ESN concept and its main
properties. A description of the proposed ESN based
framework and its application to blood vessel segmentation
in retinal images is presented in Section I'V. Practical choices
related to the setup of the proposed framework are reported
in Section V, Section VI presents the evaluation experiments
conducted on the DRIVE dataset to validate the proposed
approach and a comparison of the obtained results with state-
of-the-art methods. Section VII concludes the paper and
highlights potential future research directions.

II. RELATED WORK

Based on the training mode, existing algorithms for blood
vessel segmentation in retinal fundus images can be
classified into two main classes, namely unsupervised and
supervised methods.

A.  Unsupervised Methods:

Unsupervised blood vessel segmentation algorithms can
be further grouped into 3 categories (1) matched filtering
approaches, (2) vessel tracking approaches and (3) model-
based approaches. Matched filtering techniques search vessel
segments using convolution of a 2-D kernel with the retinal
image, typically a Gaussian based kernel or its derivatives is
used in different directions to detect vessels of different
orientations [5], [19]. In a recent work, Azzopardi et al. [20]
proposed a technique of vessels detection based on a
combination of shifted filter responses (COSFIRE). The
matched filtering techniques work well for healthy images but
they usually increase the false positives, i.e. the number of
non-vessel pixels that are detected as vessels, in pathological
images [1]. In vessel tracking methods [21], [22], tracking
consists of segmenting vessels by following vessel
centrelines using local information after selecting a set of

reliable seed points on the vessel tree to use as starting points.

It is reported that these methods are able to produce accurate
vessel widths, however they often fail to detect blood
vessels with no seed points [23]. Finally, the model-based
group of approaches include the vessel profile models [24]
and the deformable models [25]. Profile models consider that
the vessel intensities vary according to a certain model such
as a Gaussian or a second-order derivative Gaussian [26]. The
deformable (a.k.a snake) models is also used for vessel
segmentation in retinal images [27]. A snake is defined by as
active contour model which uses an iterative adaptation to
match the shape of the desired structure. The model-based
approaches suffer from the fact that the vessels are usually
crossed and having many branches.
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Fig. 1. Generic Echo State Network architecture

B. Supervised Methods:

Blood vessel segmentation based on supervised methods
can be approached as a pixel classification problem where
image pixels are represented by a set of features (e.g. spatial,
texture, intensity etc.) and a classifier is then trained using the
extracted feature vectors from hand-labelled gold standard
images to discern vessel pixels from non-vessel ones.
Different features such as Gaussian and its derivatives [28],
ridge-based vessel detection features [29], Gabor filter
responses [30]-[32], moment-invariant [33], grey-level
features e.g. mean and standard deviation [32], [33], gradient
vector field [31], morphological transformation [31], line
strength measures [31], the stroke width transform (SWT)
[32], Weber’s local descriptors (WLD) [32] and vesselness
[32] have been used in vessels segmentation based on
supervised techniques. The extracted features are classified
using different classifiers such as K-nearest neighbour [28],
[29], Gaussian mixture model, Bayesian classifier [30],
multilayer feedforward neural network [33], ensemble system
of bagged and boosted decision trees [31] and random forest
classifier [32]. Recently, Li ef al. [23] have reformulated the
problem of blood vessel segmentation as a data
transformation between retinal images and the vessel map.
They have employed a deep neural network for modelling the
reformulated transformation task. It is well known that
supervised blood vessel segmentation techniques usually
result in higher accuracy than their unsupervised counterparts
given the a priori knowledge used by the supervised methods
(i.e. ground truth pixel labels). However, such ground truth
labelled data may not always be available for training these
supervised techniques. In addition, as pixel labelling is
carried out manually by experts, there is often disagreement
between them in identifying blood vessels [1].

III. ECHO STATE NETWORK

The general architecture of an ESN as described in [11] is
shown in Fig. 1. An ESN consists of three layers: an input
layer, a dynamic reservoir which represent the internal layer
of the ESN, and read-out layer which represents the output
layer of the ESN [11]. The input layer connects to the nodes
of the dynamic reservoir through random synaptic
connections denoted by Wij,. The reservoir consists of a large
number (N) of randomly generated nodes which are sparsely
connected through randomly weighted connections denoted
by Wini. The nodes of the reservoir are connected to the output
layer, which contains L output nodes, through output weights
denoted by Wou.
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Fig. 2. Proposed ESN framework; Mi, Si represent the mean and standard
deviation values of pixel I neighbours.

The following two equations control the dynamics of the
ESN:

X (n+ 1) =f(Wixx(n) + Win X un+l)) (1)
y (nt1) = g(Wou x(n+1)) 2)

where x(n) and x(n+1) represent the reservoir states at times
n and n+1, respectively. y(n+1) represents the ESN output at
time n+1. Wiy is of size NxN and represents the matrix of
connection weights linking the reservoir nodes. W, of size
KxN, represents the weights matrix of the input connections.
u(n+1) represents the input data at time step n+/ which is
given by u(n+1) = {uy(n+1): j = 1, ..., K}. frepresents the
reservoir nodes activationffunction, usually hyperbolic
tangent/sigmoidal functions are used. Wy, of size NXL,
represents the readout weight matrix. Finally, the function g
represents the activation function of the output neurons which
linear in general.

The training algorithm of the ESN consists of simply
identifying the readout layer weights which minimize the
mean squared error between Y, the actual, and Yy, the desired
output, given by:

Waut:argw(min”Y - Yd ”2) (3)
where symbol || .|| denotes the Euclidean norm and Wy is
given by:

W= (XTX) ' XYy 4

Xis a matrix which accumulates all of the reservoir states and
XT represents its transpose. (X7 X)~ denotes the inverse of the
square matrix X7 X.

The minimisation of the readout layer error is usually
done using linear regression algorithms [11]. However, in this
work, we have proposed to use a multi-layer perceptron as the
ESN readout layer trained by error backpropagation instead
of a single-layer trained by linear regression.

IV. THE PROPOSED BLOOD VESSEL SEGMENTATION USING
THE ESN-BASED FRAMEWORK

Unlike the other supervised techniques reviewed in
Section I1.B, the proposed ESN-based approach projects the
extracted pixel features (described in Section V.B) onto a new
feature space represented by the reservoir internal activations.
The new feature space is represented by the reservoir output
matrix. The next step is to train the readout layer, which in
our case consists of an MLP, using a set of pixels selected
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Fig. 3. Examples of retinal images from the DRIVE dataset. Left column:
Original images. Right column: corresponding ground truths.

from the training image dataset. The ground-truth-
segmentation of the training images is used as the desired
outputs. Then, the trained MLP (readout) is used for
segmenting the pixels of newly unseen (testing) retinal
images into vessel or background. Fig. 2 illustrates the
proposed approach.

V. EXPERIMENTAL SETUP
A. The DRIVE dataset

In order to thoroughly evaluate the ESN-based blood
vessel segmentation approach, we have conducted extensive
experiments on the widely used DRIVE dataset which
contains forty retinal images of size 768x584 pixels each with
a circular field of view (FOV) with a diameter of 540 pixels
approximately [29]. The DRIVE dataset is split into a training
set (20 images) and a test set (20 images) [29]. Fig. 3 shows
samples of the original images from the DRIVE dataset with
their corresponding ground truths.

B. Retinal image feature extraction

We have used simple features computed from pixels
intensities in addition to other extracted Gabor based texture
features and Gradient operator. As the green channel was
found to offer better contrast between vessel and background
pixels and the red and blue planes were found to be rather
noisy, it has been used in the proposed approach to extract all
of the RGB retinal image features. [29], [32] and [33]. It is
worth noting that the features are extracted without any pre-
processing of the images to preserve the vessel structure and
especially avoid the risk of thin vessel removal.



1) Intensity-based features

For each pixel, we have used the average and the
standard deviation of its neighbouring pixels within a
19x19-pixel window. The size of the neighbourhood window
has been chosen by trial and error.

2) Gabor-based features

Gabor filter is a well known linear filter that is widely
used in image processing, e.g. edge detection and
characterisation of image textures. Due to the structure of
vascular tree in retinal images, the Gabor filter has also been
used in many works of vessel segmentation [5], [19], [30]-
[32] because of its capability to be tuned to specific
frequencies, directions and scales, hence detecting vessels of
different orientations and sizes. A 2D-Gabor filter is given by
a Gaussian kernel function that is modulated by a
complex sinusoidal wave:

I

glx,y) =exp (— %) exp (i (21rx7’ + l[))) (5)

where x' =xcos0 +ysinf, y' = —xsinf +ycosf, A
represents the wavelength of the sinusoidal factor, 6 is the
orientation, Y is the phase offset, § is the standard deviation
of the Gaussian envelope and y is the spatial aspect ratio. The
bandwidth of the Gabor filter b is related to the ratio o/A. In
our implementation, we have set the different parameters as
follows: 1€ {4, 6, 8}, y€ {0.25,0.5},0 = {kn/4, k=0, .. .,
7}, and b is set to 1. We consider the obtained response with
maximum modulus across all orientations (defined by 8) for
each pixel position and scale, which produce 3 x 2 x 1 =6
different configurations of Gabor filters. Fig. 4 (c) shows an
example of Gabor filter application on one image from the
DRIVE dataset.

3) Gradient-based features

Image gradient is an operator used in image processing to
detect edges and extract texture features by computing the
directional change in the intensity into an image. Equation (6)
defines the gradient at each point of the image:

af
— | 9x| —
vf =[5 = [_] ©)
oy
of of Lo L
where: P and 2,8r€ the gradient in the x and y directions,

respectively. Usually the convolution of the image with such
operators like the Sobel or the Prewitt operator is used to
approximate the image gradient. In this work, we have used
the Sobel operator:

-1 0 +1
Gx=[—2 0 +2|*1I And
-1 0 +1
-1 -2 -1
G,=10 0 01 (7)
+1 +2 +1

where * denotes 2-D convolution, [/ respresents the source
image. At each point in the image, the gradient magnitude
G and direction @ are computed by combining G, and G,
using the following equations:
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Fig. 4. Example of extracted features from the DRIVE dataset (a) original
image, (b) Green plane (c) Red plane, (d) Blue plane, (e) Gabor filter
response for A =8 and y= 0.5, and (f) Gradient magnitude and (g) gradient
direction.

G =G+ G} (®)

0 = arctg (C;_y) ©
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An example of the gradient magnitude and direction for
an image from the DRIVE dataset are illustrated in Fig. 4(d)
and Fig. 4(e), respectively.

In this work, all extracted features are normalized
between 0 and 1 using the following equation:
N Uk(i)—min(Uk)
Uk (l) - max(Ug)—-min(Ug)

(10)



whereU = [U,, U,, ..., U, ], and each component U, is a vector
which contains the values of a particular feature (e.g. average
or standard deviation) of all the pixels of the image.

C. Evaluation

In order to thoroughly evaluate the proposed framework
and compare its performance against related state-of-the-
art techniques, we have used the most common objective
evaluation metrics based on accuracy, specificity and
sensitivity:

Accuracy = (Tp + Ty)/(Tp + Fp + Ty + Fy)  (11)
Specificity = Ty/(Ty + Fp) (12)
Sensitivity = Tp/(Tp + Fy) (13)

where TP represents the true positives, which are the vessel
pixels detected as vessels, FP represents the false positives
which represent non-vessel pixels detected as vessels, TN
represents the true negatives which are the non-vessel pixels
detected as non-vessels and FN is the false negatives which
are the vessel pixels detected as non-vessels.

D. ESN Setup

We have randomly initialised the input and the reservoir
weights between -1 and +1. As described in Section III, the
sigmoidal functions are a common choice of activation
functions for the reservoir nodes. However, we have used the
hyperbolic tangent function (commonly denoted by tanh).
Additionally, the ESN input layer does not connect directly
with the readout layer and the latter does not feedback to the
former. The Echo State Network parameters are set according
to the ESN design guidelines derived in our previous work
[18] where the connectivity density, the spectral radius and
the reservoir size are set 0.2, 0.001 and 100, respectively. As
discussed in the authors’ previous work [18], it was
demonstrated that small set of randomly selected neurons was
sufficient enough for extracting good quality image features
for producing adequate general-purpose image segmentation
performance. Therefore, so in our experiments here we have
selected randomly a small set of 20 nodes from the dynamic
reservoir for use as the newly projected pixel features for
classification. We have varied the number of selected neurons
and extensive experiments were conducted before settling on
20 neurons which is found to be the minimum number of
neurons sufficient for achieving competitive blood vessel
segmentation performance.

E. Readout Setup

As discussed earlier, we have adopted an MLP to realise
the ESN readout function of our ESN. It has been reported
that mapping x(n) to y(n) using MLP as the ESN readout is
theoretically more powerful than other linear readouts. In
addition, MLPs are more suitable for learning non-linear
mappings as discussed in [9]. In our experiments, the used
MLP has two hidden layers of 25 sigmoidal neurons each, this
choice is made through trial and error. The MLP output layer
contains only one neuron with a linear activation function
limited between 0 and 1. Its desired output is set to 1 if the
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Fig. 5. ROC curve of the proposed framework for the DRIVE dataset.

input pixel belongs to the vessel class, otherwise (i.e. input
pixel is non-vessel) it is set to 0.

F. Training

As discussed in Section V. A, the DRIVE dataset contains
20 training images and 20 testing images. The training group
contains 569415 vessel pixels in total and 3971591
background pixels (non-vessel). To train the MLP (which is
used

to realise the ESN readout), we have randomly selected
without replacement a total of 56941 vessel pixels and a
similar number of non-vessel pixels, from the training images.
In total, we have selected 113882 pixels which amounts to
approximately 2.5% of the total number of pixels in the
training images. After training, the 20 testing images are used
to test the segmentation performance of the proposed ESN
based framework.

VI. RESULTS AND DISCUSSION

This section presents a comparison of the obtained
performance results with the state-of-the-art methods [23],
[291-[33]. A threshold is used to classify a pixel as vessel or
non-vessel (i.e background) and the Received Operating
Characteristic (ROC) curve is then computed. Fig. 5 shows
the ROC curve obtained by varying the decision threshold
between 0 and 1.

Table I shows a comparison of the obtained performance
with respect to area under curve (AUC), accuracy (Acc),
specificity (Sp) and sensitivity (Se) against those reported by
other related methods. For each method in Table I, the
reported Se and Sp values correspond to the optimal decision
threshold that gives the maximum accuracy (Acc). Overall,
the proposed framework achieves comparable performance
with the related state-of-the-art methods. For example, our
method achieves an accuracy (Acc) of 0.9464 which is
slightly higher than those of [29], [30] and [33] which
achieved 0.9461, 0.9452 and 0.9441, respectively, and
slightly lower than [31], [32] which achieved 0.9480 and
0.9474, respectively. However, Li ef al. method [23] achieved
0.9527 and outperformed all of the other techniques.
Regarding the AUC measure, the proposed framework



TABLE L COMPARATIVE EVALUATION OF THE OBTAINED
SEGMENTATION PERFORMANCE USING THE DRIVE DATASET
Method Year Se Sp Acc AUC

Li[23] 2016 0.7569 | 0.9816 | 0.9527 | 0.9738
Fraz [31] 2012 0.7406 | 0.9807 | 0.9480 | 0.9747
Cheng [32] 2014 | 0.7252 | 0.9798 | 0.9474 | 0.9648
Our proposed method 2016 0.7173 | 0.9786 | 0.9464 | 0.9590
Soares [30] 2006 0.7332 | 0.9782 | 0.9461 | 0.9614
Marin [33] 2011 0.7067 | 0.9801 | 0.9452 | 0.9588
Staal [29] 2004 N.A N.A 0.9441 | 0.9520
TABLE II. AVERAGE PROCESSING TIME OF ONE RETINAL IMAGE BY

DIFFERENT SEGMENTATION TECHNIQUES

Method Processing time
Li [23] 1.2 min
Fraz [31] 2 min
Soares [30] 3 min
Marin [33] 1.5 min
Staal [29] 15 min
Cheng [32] Less than 1 min
Our proposed method 18 seconds

achieved 0.9590, which is higher than those of [29], [33]
methods achieving 0.9580 and 0.9520, respectively, and
lower than those of [31], [23], [32] and [30] which achieved
0.9747, 0.9738, 0.9648 and 0.9614, respectively. Therefore,
our method tends to obtain comparable segmentation
accuracy result in comparison with the other state-of-the-art
techniques.

In addition, Fig. 6 shows sample segmentations obtained
by the proposed ESN framework. It clearly shows that the
segmentation results of our method are visually very similar
to ground-truth segmentations.

As discussed in Section V.F, the percentage of training
pixels used in our approach is approximatively 2.5 % from
the total number of pixels which form the training set, unlike
the methods by Li [23] and Soares [30] which have
respectively used 30% and 22 % of the total pixels to train
their classifiers. That is, a small amount of training pixels was
found to be enough to train our approach and achieve
comparable accuracy results with other methods.

Table II reports the obtained average processing time of
one retinal image segmentation for the different techniques.
The results of the other techniques are taken from [23]. The
processing time of our technique involves three stages: the
initial features extraction, the ESN reservoir output
computation and the classification using the already trained
MLP. These three stages take about 11, 2 and 5 seconds,
respectively. Therefore, our technique requires
approximately 18 seconds to segment one image from the
DRIVE dataset. MATLAB 2013a has been used to implement
the proposed ESN-based framework on an Intel 17-2600 CPU
(3.39 GHz, 4 GB RAM). Table II shows that our approach
clearly outperforms all other techniques in terms of
processing time of one retinal image. Usually the processing
time of supervised methods involves the features extraction
and the classification. However, some methods require pre-
processing before extracting pixel features from images and
as well as post-processing after computing the output for each
pixel and classifying it as a vessel or background. For
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Fig. 6. Sample segmentations using the proposed ESN method. Left to
right: original image, ground-truth segmentation, the proposed approach.

instance, Soares et al. [30] have developed an iterative
algorithm which gets rid of the high contrast difference
between the retinal fundus and the area outside the aperture.
The pre-processing step of this method consists of iteratively
growing a region of interest that is initially determined by the
camera aperture. They firstly determine the pixels located on
the exterior border of the initially identified region of interest.
The value of each of these pixels is then replaced with the
mean value of its neighbouring pixels within the identified
region of interest which is expanded by including these
modified pixels. This iterative process is considered as an
artificial increase of the grown region of interest. This pre-
processing procedure is time consuming. They also used a
Gabor wavelet transform for 18 different orientations.
However, in our work we use Gabor filter for only 8 different
orientations. Staal ef al. [29] computed a group of 27 features
for each pixel using a ridge-based vessel detection method.
They then applied a sequential forward selection method to
extract features with the best class separability and used k-
NN to classify them. The computation of such number of
features and the scheme of best parameters selection are time
consuming. In Marin et al. [33], a series of pre-processing
operations are applied before extracting the pixels features. It
consists of the following three stages: (1) removal of the
reflex of the vessel central light, homogenization of the image



background and, finally, enhancement of the segmented
vessel areas. The aim of the first stage is to remove the central
lighting of the blood vessel. For this reason, they filter the
retinal image by applying a morphological opening. This
operation has the risk to remove thin vessels. The second
stage is to homogenize the background in order to remove its
lightening variations. The background is estimated from the
image through the application of filtering using a large
arithmetic mean kernel. Then the estimated background is
subtracted from the resulted image of the first stage. The final
pre-processing stage consists in the enhancement of the
generated vessel-image which is achieved through the
estimation of the complementary of the homogenized image
followed by the application of the morphological Top-Hat
transformation. These various pre-processing operations take
considerable time. Unlike these methods, neither pre-
processing nor post- processing are used in the proposed ESN
based segmentation approach.

VII. CONCLUSION

We have proposed an ESN-based framework for blood
vessel segmentation in retinal fundus images. In this study,
we have studied the viability of using the ESN reservoir for
extracting more expressive pixel features which can be used
for achieving competitive blood vessel segmentation in
retinal images. It was found that while the proposed technique
achieved comparable accuracy performance with state-of-
the-art vessel segmentation techniques, it clearly
outperformed all of the other techniques in terms of
processing time required to segment a retinal image. Further
work is planned to investigate the use of other classifiers as
the ESN readout, and the use of the Liquid State Machine
(LSM) which is similar to the ESN concept but uses more
biologically plausible spiking neuron models as reservoir
nodes instead of the classical rate-based neurons used in the
ESN based technique.
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