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Abstract - The recommendation to change breathing patterns from the mouth to the nose can have a significantly positive impact upon 

the general well being of the individual. We classify nasal and mouth breathing by using an acoustic sensor and intelligent signal 

processing techniques. The overall purpose is to investigate the possibility of identifying the differences in patterns between nasal and 

mouth breathing in order to integrate this information into a decision support system which will form the basis of a patient monitoring 

and motivational feedback system to recommend the change from mouth to nasal breathing. Our findings show that the breath pattern 

can be discriminated in certain places of the body both by visual spectrum analysis and with a Back Propagation neural network 

classifier. The sound file recoded from the sensor placed on the hollow in the neck shows the most promising accuracy which is as high 

as 90%.  

 
Index Terms — pervasive health, respiratory monitoring, sensors 

 

 

1.   Introduction 

 

In the 1990’s Buteyko identified the need for asthmatics to breathe through their nose to prevent against over-breathing caused 

by mouth breathing (McHugh et al., 2003). There are currently a number of clinical studies being undertaken to prove  the 

clinical significance of the Buteyko breathing technique. It is also well recognised that nasal breathing warms, humidifies and 

releases endogenous nitric oxide into inhaled air.  These all play an important role in conditioning the lungs. Unfortunately 

breaking the habit of mouth breathing is difficult, and asthmatics practising the Buteyko breathing technique will often revert to 

mouth breathing automatically. Asthmatics attempting to adopt this technique to gain better control over their condition need to 

be constantly reminded to breathe correctly. It is well known that normal lung sounds show interpersonal variations. In addition 

to this, it has to be taken into account that both a same-day variability and a between-day variability exist in lung sounds 

(Mahagna and Gavriely, 1994). 

 

On the basis of these large variations, concrete changes in nasal and mouth will be seen only with investigation of a larger 

number of subjects. The purpose of computer-supported analysis of breathing sounds is for objective understanding and 

archiving. Because the sensitivity of human hearing is reduced, particularly in the lower frequency ranges, an objective 

electronic recording for recognizing deviations within these ranges could be helpful. Since the procedure for doing this is not 

costly, invasive, or particularly intensive, it would be suitable as an examination method for high-risk groups such as pneumonia 

patients. A daily or even more frequent analysis of lung-sound spectra could help to identify patients with say, incipient 

pneumonia before the appearance of any radiologic abnormality 

 

The ability to electronically record and analyze biological sounds, such as of heart and respiratory sounds, first developed in the 

1950s (McKusick et al., 1955)  and it was soon adopted by others in the 1960s and 1970s (Rozenblat et al., 1968). Since that 

time, it has been possible to describe lung sounds in terms of their timing in the respiratory cycle, duration, waveform, and 

frequency components. The names used for different respiratory sounds took on definitions based in part on their objective 

features revealed by sound analysis (Loudon and Murphy, 1984). Lung sounds are frequently recorded for teaching purposes and 

analyzed for research (Kraman et al., 2006). The implicit goal of such research is to extract from the lung sound signal, 

qualitative or quantitative information that relates to important physiological or pathological processes. The fact that these 

sounds may be easily and noninvasively recorded adds to the attraction of the approach (Kraman et al., 2006). Chest auscultation 

is an important part of patient assessment for the detection of respiratory disease. In clinical practice, lung disease may be 

diagnosed when adventitious sounds are present, or when an individual’s breath sounds are perceived as having a frequency 

content and intensity that differ from normal. This latter process is critically dependent on the listener’s knowledge of the range 

of frequencies and intensities that can be found in normal breath sounds. Thus, clinicians need to have a clear perception of what 
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these normal ranges of frequency and intensity are, to avoid systematic errors in auscultation. This may be one reason why 

agreement on auscultatory signs of lung disease among different observers is reported to be modest (Smylle et al., 1965; Godfrey 

et al., 1969; Pasterkamp et al., 1987; Gavriely et al., 1995). 

The frequency range of normal lung sounds in adults extends from 50 Hz to 500 Hz, and the shape of the linear amplitude 

frequency spectrum (AFS) of these sounds follows an exponential decay pattern. The studies of normal breath sounds in children 

have been more limited but suggest that the frequency content of their breath sounds differs from that of adults ((Schreiber et al., 

1981; Hidalgo et al., 1991). (Forgacs et al., 1971) demonstrated that the intensity of breath sounds at the mouth is related to the 

forced expiratory volume in one second (FEV) in chronic bronchitis and asthma. The development of modern signal processing 

has greatly increased the possibilities to investigate the relationship between respiratory sound signal and ventilatory function. 

The main interest has been focused on wheezing sounds and on variables reflecting the frequency distribution of breath sounds in 

lung sound spectra. The aim of the study by (Malmberg et al., 1994) was to investigate the relationship between ventilatory 

function and frequency spectrum variables of breath sounds in asthmatic patients and in healthy control subjects. The changes in 

ventilatory function were spirometrically determined during a graded histamine challenge test; airflow standardized breath sound 

recording was used. The trachea and the chest were compared as recording sites. They found that in asthmatics, the breath sound 

frequency distribution in terms of median frequency reflected acute changes in airways obstruction with high sensitivity and 

specificity (Malmberg et al., 1994). Vital signs information influences the patient care decisions of emergency services providers 

and there is a sound clinical basis in striving for comprehensive and accurate recordings (Brown & Prasad, 1997). The 

respiratory rate for instance is an accurate reflection of severity of illness and if carefully measured is a sensitive marker of 

accurate respiratory and metabolic dysfunction, especially in the critical care setting ) (Gravelyn & Weg, 1980). Primary clinical 

courses emphasise that subtle changes in the rate of breathing are highly significant. The need for continuous, non-invasive and 

reliable respiratory monitoring has long been recognized. 

 

In a study by (Baird & Neuman, 1992) a nasal-oral air temperature sensor for measuring breathing in infants was developed 

using microelectronic technology and studies on infants showed that 80% of them demonstrated periods of oral, along with 

nasal, breathing. The sensor is quite invasive however and had to be taped to the upper lip of the infant being studied so that the 

side with the two temperature sensors was positioned with each sensor lying just outside of the infant’s nares. The temperature 

sensor on the opposite side of the structure was then positioned over the infant’s mouth. (Yu et al., 2008) used a Respiratory 

Inductive Plethysmography (RIP) to detect a user’s breathing status. It can detect the breathing condition according to a natural 

expansion or a natural shrinkage of the user’s body. The breathing condition at least includes breathing mode (breast breathing 

or abdominal breathing), breathing rate, and breathing depth. The monitor displays a relative breathing condition picture 

according to the detected breathing condition. As such, the user can understand the practical breathing condition by viewing the 

breathing condition pictures or sounds, so as to be instructed to learn to use a breathing pattern suitable for him however it does 

not attempt to discriminate between nasal and mouth breathing. 

 

We investigate the principles of automated discrimination of breathing patterns using an acoustic sensor, to examine if the two 

breathing types can be classified with high accuracy for certain locations in order to later form the basis of a patient monitoring 

and motivational feedback system to recommend the change from mouth to nasal breathing. 

 

2.   Sound Analysis and Feature Extraction 
 

Based on characteristics of the human voice and hearing, a number of theoretical models of sound signal analysis have been 

developed, such as Short Time Fourier Transform, Filter Analysis, LPC Analysis and Wavelet Analysis. These theories have 

been widely used for Sound Coding, Sound Synthesis and Feature extraction of the Sound. In Linear Predictive Coding (LPC), 

the feature of the sound could be extracted by calculating the coefficients in different order of the linear predictive; The Filter 

Analysis Theory first filters out the frequency of the sound signal by using a bandpass filter, then extracts the frequency feature 

based on simulating the function of the hearing system of the biological nerve cells. 

 

The main part of the Filter Analysis is a bandpass filter which is used to separate and extract the different and useful frequency 

bands of the signal. However, a complete and perfect Filter Analysis Model should be a bandpass filter that is followed by non-

linear processing, a low-pass filter, resampling by a lower sampling rate and compression of the signal’s amplitude process. The 

common function for non-linear processing is the Sin function and Triangular windowing function. In order to smooth the 

sudden changing parts of the signal, the signal should pass through a low-pass filter after the non-linear processing. The 

Alternative process which is to re-sample the signal by a lower sampling rate or compress the amplitude aims at reducing the 

calculations at a later stage. The fundamental problem of the sound signal recognition lies on what and how to choose the 

reasonable features and characteristics of the signal. A sound signal is a typical time-varying signal, however if we zoom in to 

observe it at a millisecond level, the sound signal shows certain periods that seems to be a stable signal to some extents. 

Therefore, these features are extracted to represents the original signal. The characteristic parameters of a sound signal fall into 

two types. One is the features in the time domain and the other is the features in the frequency domain after transformation of the 
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signal. Usually, just the sampling values in one frame, such as the average amplitude of short-time or the average zero crossing 

rate of short-time, could constitute the characteristic parameters in the time domain. Another type of feature can be obtained by 

transforming the original signal into the frequency domain Fast Fourier Transform, for example can retrieve the Linear 

Prediction Cepstral Coefficients (LPCC) or Mel Frequency Cepstral Coefficients (MFCC) features of the signal. This has the 

advantage of simpler calculations but has a large dimensions of feature parameters and is not suitable for representing the 

amplitude spectrum features. On the contrary, the latter type has a quite complex calculation of transforming, but could 

characterise the amplitude spectrum of the signal from several different angles. 

 

The short-time energy of the sound signal reflects the characteristics of amplitude over the time.  Linear Predictive Coding (LPC) 

analysis is based on the theory that the signal in this moment could be approximately figured out by the linear combination 

several signals before. By minimising the average variance between the actual sampling value and the linear predictive sampling 

value, the LPC parameters could be obtained. In sound recognition, the LPC parameters are seldom used directly but rather the 

Linear Predictive Cepstrum Coefficients (LPCC) derived by the LPC. The LPC parameters are the acoustic feature derived by 

research on the voice mechanism of humans. The Mel Frequency Cepstrum Coefficients (MFCC) is from research on human 

hearing. The theory is that when two tones of similar frequency appear at the same moment, only one tone can be heard by 

humans. The critical bandwidth is the bandwidth boundary where the human feels the sudden change. When the frequency of the 

tone is less than the bandwidth boundary, people usually mistake hearing the two tones as one, and this is called the shielding 

effect. Mel calibration is one of the methods to measure the critical bandwidth, and the calculation of the MFCC is based on the 

Mel frequency. 

 

In subjects with healthy lungs, the frequency range of the vesicular breathing sounds extends to 1,000 Hz, whereas the majority 

of the power within this range is found between 60 Hz and 600 Hz ((Pasterkamp et al., 1997). Other sounds, such as wheezing 

or stridor, can sometimes appear at frequencies above 2,000 Hz ((Gross et al., 2000). The normal classification of lung sounds 

in frequency bands involves low (100 to 300 Hz)-, middle (300 to 600 Hz)-, and high (600 to 1,200 Hz)- frequency bands 

(Pasterkamp et al., 1997). We concentrated on the 1 Hz to 1000 Hz range. The main interest in our study was focused on 

frequencies below 600 Hz, and our coupler depth of 6 mm was therefore sufficient. In order to investigate whether there were 

differences in sounds at different locations, we recorded the breathing sounds in five positions in the neck region. The 

microphone coupler was secured with double-sided tape in these fixed positions. The controlled breathing needed for this was 

practiced before data recording. The subject attained but did not exceed a certain flow value (1.7 L/s), which resulted in the 

airflow being approximately the same in all records. By using standardized breathing, we assumed that the influence of sounds 

emanating from the mouth or pneumotachograph tube were the same.  

 

 

3.   Discriminating Breathing Sounds 
 

The Axelis acoustic sensor comprised a substrate with a layer of piezoelectric film disposed on the curved portion of the 

substrate second surface and a layer of pliable material disposed on a second surface of the piezoelectric film opposite the first 

surface for contacting with an object to be sensed. This electronic stethoscope operates as a vibration sensing element contacted 

to a body part such as neck or throat so as to detect sound propagating through tissue, muscle, tendon, ligament and bone. We 

connected the sensor to a recorder to record the sound directly onto a flash drive. We used MATLAB for analysis of the audio 

 

To determine the feasibility of automatically distinguishing between nasal and mouth breathing based on acoustic sound a range 

of tests on various recordings were carried out. Recordings were made on a number of subjects where the subjects performed 

Nasal and Mouth breathing whilst the acoustic sensor is placed at different locations close to the throat. These included directly 

under the chin, on the windpipe, on the hollow point directly above suprasternal notch (also known as juglar notch) and on the 

right and left hand side of the neck. Research shows the frequency of lung sound lies mainly below 1000 (Hz) and this project 

focus the frequency under 1200 (Hz). Different frequency bands are used for different function for this experiment, the much 

lower frequency under 100 (Hz) is cut off to extract acoustic features and the higher frequency above 1200 (Hz) carry a lot of 

noise which has been filtered out at the first stage, the rest in between is used for end-point detection. So the original signal 

should pass through several bandpass filters to cut out the specified frequency band. However, unlike speech signals coming 

from lips that has a attenuation of  6dB/oct, the pre-recorded sound signals do not have to be pre-emphasized as they came from 

the acoustic sensor attached to the hollow. We created a filter built on the Matlab function ‘butter’: 

 

 
where parameter ‘order’ is the order of the filter that results in a better filter effect when use a larger order but also brings in a 

larger quantity of calculations, and the length (L) of the parameter vectors ‘u’ and ‘v’ have a relationship with parameter ‘order’ 

that: 
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Parameter ‘Wn’ is the normalization value of the frequency that to be filtered. When the sample frequency is expressed as fs, as 

the highest frequency that could be processed is fs/2, if it is the frequency (f) 2000 that aims to be filtered out then: 

 

 
Parameter ‘function’ is a string that indicates the specified function of the filter. E.g. function = ‘low’ means a Low Pass Filter, 

function = ‘high’ represents a High Pass Filter. Based on the formula Lu,v = order + 1, the higher order of the frequency was 

more effective. The filter with the parameter vectors ‘u’ and ‘v’ having larger values requires more complex calculations. 

However, we found that the filter was increasingly effective when applying a larger order gradually from 1 to 8. We used short-

time average energy to describe the amplitude features of the sound signal. In an acoustic signal, most of the energy lies on the 

higher frequency band, and high frequency means a higher zero crossing rate. The energy should have some relationship with the 

zero crossing rate but the breathing sound is unlike normal speech signals. Firstly, a large part of the recorded file is noise as the 

equipment used contains a sensitive sensor which records the breathing sound inside the body as well as the noise from the skin 

and airflow through the skin. In fact, sometimes the noise is much larger than the useful breathing sound. Secondly most of the 

energy lies on the frequency band below 100 (Hz) which is a frequency band the human beings can barely hear. This frequency 

band is also the most useful band for feature extraction. So it is uncommon to see the much lower frequency band having a 

higher zero crossing rate as the changing rate is larger in that particular band. 

 

4.   Our Method 
 

The first stage was to take recordings of mouth breathing only, nose breathing only and a mix of breath patterns with mouth and 

nose with the sensor placed in the hollow of the neck (which was discovered to be most accurate location). All recordings were 

done for 60 seconds each whilst subjects sat a in a quiet room. The pre-processing filtered out certain frequency bands and added 

a window to smooth the signal as well as apply a Fast Fourier Transform. The pre-processing filtered out the noise in the higher 

frequency above 1200. Then the signal was cut into smaller frames and windowed for each one. The Fourier Transform was 

applied to the windowed frame until we got a spectrum map by pseudo-color mapping. We use neural networks as they have 

been used in the medical field for a long time for their effectiveness in pattern recognition. Other classification methods such 

Support Vector Machine (SVM), K-Nearest Neighbour (KNN) may also be potentially suitable for this task. Characteristic 

extraction followed which involves End-point Detection and  passing through a band-pass filter. Next, we applied the Back-

propagation neural network with training data from mouth and nose breathing in order to be trained and weight adjustment.  

Finally, for the recognition stage, test data is input to the neural network using the weights obtained in the training process. 

 

The spectrum analysis of the signal is based on Short Time Fourier Transform (STFT) analysis of discrete time domain. Discrete 

time domain sampling signal can be expressed as x(n) where n = 0, 1, … , N-1 means the sampling point number and N is the 

signal length. In the process of the digital signal people usually frame the signal by adding window on it, then x(n) could be 

expressed as Xm(n) where n = 0, 1, … , N-1 and 'm' means the number of the frame, 'n' is the time number of the synchronous 

frame, N is the sampling points within one frame known as the frame length. the Discrete Time domain Fourier Transform 

(DTFT) of windowed signal Xm(n) could be illustrated as below: 
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in order to simplify the discrete calculation, the Discrete Fourier Transform (DFT) of wm(n) * xm(n), we use: 

 

 
 

The |X(m, k)| is then the estimated value of short-time amplitude in terms of one frame Xm(n). Take m as the time variable, k as 

the frequency variable then |X(m, k)| is the dynamic spectrum of signal x(n). Since the Decibel (dB) could be calculated as: 

 

DB(x(n)) = 20*log10(|X(m, k)| 
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We can then get the dynamic spectrum of the signal displayed by DB. Again simplify the calculation of the |X(m, k)| by Fast 

Fourier Transform (FFT) (Cooley et al., 1965). Take 'm' as the abscissa, 'k' as the ordinate and the value of |X(m, k)| as the 

pseudo-color mapping on the two-dimensional plane, we get the dynamic spectrum of the signal x(n).  Mapping the value of 

|X(m, k)| to the pseudo-color enables better resolution and visual effects of the dynamic spectrum as well as the improvement of 

the diagram's readability. The method is firstly mapping the minimum value (Xmin) of |X(m, k)| to the normalized zero, the 

maximum value (Xmax) of |X(m, k)| to the normalized 1 and the rest of them to the Ci between 0 and 1 linearly. Secondly, display 

the the Ci by the mapped color on the monitor. In order to make full use of the dynamic range of the color space, the appreciated 

base spectrum value should be chosen. The value that less than the base is limited on the base and that greater than the base then 

be normalized linearly. The color value matrix is expressed as C = {c(m, k)} then the mapping from |X(m, k)| to c(m, k) is 

illustrated mathematically as below:  
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When using a Discrete Fourier Transform (DFT), the frequency resolution of the spectrum refers to the interval between the 

discrete frequencies. This means the frequency interval (f0) represented by variable ‘k’ in the expression X(m, k). The value 

depends on the frame length N and the sampling frequency of the signal fs. Based on the Nyquist sampling theorem, f0, fs and N 

fall into the relationship as below: 

 

f0 = fs / N 
 

As the formula suggests, the frequency interval (f0) has nothing to do with the frequency that the signal contains. As long as the 

sampling frequency is a constant, increase the frame length (N) will result in the higher resolution of the spectrum or the smaller 

bandwidth that represented by the ‘k’ in the expression X(m, k), in that case the spectrum will tend to be a Narrow-band one, 

otherwise it will be a Broad-band spectrum. Increasing the resolution in frequency domain by using a larger value of N will 

result in a lower resolution in time domain of the spectrum. The way to resolve the contradiction is to introduce the sub-frame by 

frame shift (N1, N1 < N ) while choosing a larger but appropriate frame length (N), in this way a spectrum that with balanced 

resolution in frequency domain and time domain will be obtained, the sub-frame shift could be illustrated as below: 

 

xm(n) = x(n + N1 * m)      n = 0, 1, ... , N - 1,    N1 < N 
 

The aim of End-point Detection (EPD) is to find out the starting point and ending point of the digital signal which is meaningful. 

ZRO means the amount of zero-crossing value points within one frame, in general the zero-crossing rate of the voice sound is 

more or less larger than that of the silence sound (under the conditional of already got rid of the noise), and thus is used to detect 

the starting-point and ending-point within this project. When calculate the zero-crossing rate, the importance of the exactly zero 

value should not be ignored. Because the sample values retrieved from the audio file have been normalized, in order to avoid the 

possibility of increasing the ZRO by using the float number to calculate the bias, they should be unnormalized by multiplying the 

bit resolution to get back the original values. In an Arithmetic Progression a1, a2, ... , an, ... where an+1 = an + d, n = 1, 2, ... and ‘d’ 

so called common difference is a constant. In a general series expressed as y = y(t) 

 

∆y(t) = y(t+1) - y(t) 
 

where ∆y(t) is called the first order difference of y(t) at the point t, so 

 

∆yt = yt+1 - yt 
 

is defined as the first order difference of the expression y(t) where ∆ is the Difference Operator. Combining the zero crossing rate 

with the High-order Difference (HOD) operation enables the end point detection to achieve a high precision level. Here the order 

should be adjusted to decide whether first-order or second-order or even third-order should be chosen to attain the best 

performance. 
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Figure 1:  End-point Detection using the ZCR and HOD. 

 

Figure 1 shows End-point Detection after filtering out the noise in the high frequency (1200 Hz). The other information 

contained a large amount of energy in a low frequency (110 Hz)  

 

 

4.1    Artificial Neural Network  
 

The back-propagation (BP) learning algorithm is a supervised multi-layered feed-forward neural network algorithm. In a single 

ANN without a hidden layer, the δ learning algorithm could be applied to the input and output sampling data to train the network. 

It is important that the back propagation refers to the output errors but does not feedback the result of the output to the hidden 

layers or even to the input layer. The network itself does not have the feedback function but back propagates the output errors to 

adjust the connection weights of the hidden layers and output layer, so the BP network could not be regarded as nonlinear 

dynamic systems but a nonlinear mapping system. If we consider a two layer neural network, that introduces one hidden layer 

between the input and output layers, then the direction of the arrows indicates the way that the information flow through the 

network. The node pointed to is called the low layer of the arrow and the node in the arrow tail is the upper layer of the arrow, 

then the output of the j node in a given training samples could be expressed as: 

 

net j = ∑ oi * wij 
 

where oi is the output of the i node in the upper layer, wij is the connection weight between the i node in the upper layer and the j 

node in current layer, as for the input layer the input is always equals to the output at any node. The output (oj) of the j node is 

the transformation of its input by the expression given below:  
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where the output (oj) is taken as the input of nodes in the lower layers. We can abstract the above to get the function: 
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then the differential expression of the output (oj) is given as: 
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If we set the target output of the j node in the output layer as tj, the output error is then obtained as tj - oj. We back propagate this 

error value from the output layer to the hidden layers and continually adjust the weights according to the principle of the 

amendment to decrease the errors. The error function for the network is: 
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In order to have the error (e), a decrease trend, the amendment of the weights should follow the gradient descent of the error 

function, that is: 
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where η is a gain coefficient that greater than zero. 

 

The number of the input neurons depends on the dimension of the features extracted after the pre-processing stage. The number 

of output neurons is two, representing mouth breathing and nasal breathing respectively. The number of the hidden layer neurons 

is twice the input neurons typically but it is still adjustable to achieve the best performance. The neural network is illustrated in 

figure 2. 
 

 
Figure 2: Design of twp-layer artificial back-propagation neural network 

 

We initialize the hidden layer and assign connection weights with random numbers between 0 and 1 for the hidden layer and 

output layers. We normalize the feature values extracted to form a vector of n where n = (x1, x2, ... , xn) and the two types of 

target output are t1 = (1, 0) which represent mouth breathing and t2 = (0, 1) for nasal breathing, so each training sample falls into  

I1 = (x1, x2, ... , xn; 1, 0) or I2 = (x1, x2, ... , xn; 0, 1).  The non-linear function: 
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is used to calculate the output of each node layer by layer without the input layer. We finally get the output as: 

 

O = (o1, o2, ... , om) 
 

We adjust the weights from the output layer to the hidden by using the following equation: 

 

wij(N+1) = wij(N) - ηδjoi 
 

where oi is the output of the i node in the upper layer. If j is a node in the output layer, then 

 

δj = oj (1 - oj) (oj - tj) 
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if j is a node in the hidden layer, then 

 

δj = oj (1 - oj) ∑ δk wjk 
 

where k represents all the nodes in the lower layer of layer where j node located. The non-linear function with a ‘S’ shape used 

for BP Neural Network algorithm is: 

 
We adjust the weights for the hidden and output layers respectively using the gradient descent method, as well as the threshold 

which is amended in each loop. The adjusting value for the weights and threshold between output layer and hidden layer is: 

 

 

 
 

 

5.   Evaluation of Results 
 

A frequency analysis was carried out on the signals recorded from each of the locations. For each location, each type of breathing 

was performed for approximately 60 seconds. Every 100Hz range up to 1000Hz was analysed using a short time Fourier 

transform (STFT) with a window length of 5 seconds and 50% overlap.  The signal data which acts as the input for the 

classification method is the raw data recorded by the acoustic sensor. This wav audio file data is not modified. The first aspect 

performed is the pre-processing (described in section 4) which is  end point detection. We then extract features in each breathe 

(mainly under the frequency of 110 Hz) and finally, we use those features as the input for the BP Neural Network. 

 

 

Window[s] Under Chin Windpipe Hollow RHS neck LHS neck 

5 46.0 58.7 100.0 68.8 54.2

7.5 50.0 45.5 100.0 70.8 50.0

10 31.3 50.0 100.0 75.0 50.0

12.5 75.0 40.0 100.0 75.0 75.0

15 30.0 37.5 100.0 87.5 50.0

Average Accuracy [%] 1-100Hz 

 
Table 1: 1-100Hz average accuracy 

 

The spectrogram plots for nasal and mouth breathing for each location and for each frequency band displayed visually 

discernable differences in certain frequency bands of the acoustic signals produced for each type of breathing for this subject. 

The differentiation between the two types of breathing  (see Table 1 and Figure 3) is more discernable for certain recording 

locations such as the hollow of the neck (Curran et al., 2010).  

 

The interface is shown in Figure 4,  where the upper left part is the control, the upper right is the results, the lower left shows the 

spectrum graph, and bottom right shows the signal wave. The control part has the ‘Choose File’ button to choose an audio file in 

the ‘wav’ format. The ‘Detect Breath’ button to the right shows the end points in the signal file and  extracts the feature of the 

signal at a certain frequency band under 110 (Hz).  
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Figure 3: Spectrogram for nasal and mouth (1-100Hz) in hollow
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Figure 4: System GUI with a sound file opened 

 

The system then passes the features to the Back-propagation Neural Network to detect the breath patterns. The slider button to 

the left allows jumping to a specific time to hear the audio. The slider to the right adjusts the frequency on the y-coordinate that 

actually enables the user to zoom in or out the spectrum to get an overview or a more detailed view of the spectrum range from 

the sampling frequency to a low of 20 (Hz). The text box is used for displaying results. The plotting area at the lower right corner 

shows the signal wave after pre-processing. The end-point detection process happens after the ‘Detect Breath’ button has been 

pushed. Figure 5 shows the end-point detection function for the mouth breath signal. The blue line indicate the starting point 

where one breath procedure begins and the dark red line tells the ending point that one breath has finished. 

 

Figure 6 shows accurate breath pattern detection for the nasal breath. Only one mistake occurs in the second breath cycle. The 

classification rate is 90% correct in this instance. End-point detection result is not as good as for mixed mode breathing as 

compared to nasal or mouth alone. For the mixed breath pattern sounds, the end-point detection function only detects a little 

more than half the breath cycles. 

 

 
Figure 5 Mouth breathing End-point Detection 

 

The reason for this is that when a person breathes with their mouth for a period and then changes the pattern to nasal breathing, 

the breath sound is usually smaller than a single breath pattern. If the threshold for the end-point detection is too small, it will 

detect more false end-points. However, if the threshold is larger, a lot of true end-points will not be detected. Therefore the 

threshold has to be adjusted to fit each situation. 

 

https://doi.org/10.1504/IJBRA.2012.049623


 

 

 
Figure 6 Nasal breath only breathing pattern detection 

 
 

6.   Conclusion 
 

It is well known that the breathing pattern changing from mouth to nose impacts on patients respiratory disease, even in a healthy 

person. We investigate here whether the necessary discriminatory information of nasal versus mouth breathing can be obtained 

from acoustic sensors placed at various positions on the body. The experiment result shows that the difference between nasal and 

mouth breath can be discriminated successfully with a high enough accuracy and therefore integrated into a on-the-body acoustic 

sensor to try to give appropriate feedback to end-users. End point detection for mouth and nasal breathing is detected with 90% 

accuracy, however mixed breath patterns yield lesser results.  

 

In addition to this, it has to be taken into account that both a same-day variability and a between-day variability exist in lung 

sounds. On the basis of these large variations, concrete changes in nasal and mouth will be seen only with investigation of a 

larger number of subjects. The purpose of computer-supported analysis of breathing sounds is for  objective understanding and 

archiving. Because the sensitivity of human hearing is reduced, particularly in the lower frequency ranges, an objective 

electronic recording for recognizing deviations within these ranges could be helpful. Since the procedure for doing this is not 

costly, invasive, or particularly intensive, it would be suitable as an examination method for high-risk groups such as pneumonia 

patients. A daily or even more frequent analysis of lung-sound spectra could help to identify patients with say, incipient 

pneumonia before the appearance of any radiologic abnormality. The results presented in this work are from a preliminary 

analysis in which the experimental protocol was investigated for performing the breathing and also recording locations were 

tested. There are a number of additional measures which would be incorporated in further studies such as those mentioned above 

and a more in depth analysis of each recording site or multiple recording sites could be developed to determine if this could 

improve detection rates for subjects who may not show significant differences between the two breathing types. Further 

investigations into the physiological findings of the study are ongoing to explain why the acoustics sounds are more prominent in 

some frequencies and some areas for each breathing type. Further work can be conducted by extracting information from the 

neural network so as to convince the medical doctor to use it for classification purposes. There may also be merit in building on 

the work of (Kwong et al., 2009) in extracting useful information (associate rules) from the neural networks.  
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