
Multilayer Perceptron Neural Network for Detection

of Encrypted VPN Network Traffic

Shane Miller
Faculty of Computing and Engineering

Ulster University

Northern Ireland

miller-s5@ulster.ac.uk

Kevin Curran
Faculty of Computing and Engineering

Ulster University

Northern Ireland

Kj.curran@ulster.ac.uk

Tom Lunney
Faculty of Computing and Engineering

Ulster University

Northern Ireland

Tf.lunney@ulster.ac.uk

Abstract— There has been a growth in popularity of privacy in

the personal computing space and this has influenced the IT

industry. There is more demand for websites to use more secure

and privacy focused technologies such as HTTPS and TLS. This

has had a knock-on effect of increasing the popularity of Virtual

Private Networks (VPNs). There are now more VPN offerings than

ever before and some are exceptionally simple to setup.

Unfortunately, this ease of use means that businesses will have a

need to be able to classify whether an incoming connection to their

network is from an original IP address or if it is being proxied

through a VPN. A method to classify an incoming connection is to

make use of machine learning to learn the general patterns of VPN

and non-VPN traffic in order to build a model capable of

distinguishing between the two in real time. This paper outlines a

framework built on a multilayer perceptron neural network model

capable of achieving this goal.

Keywords—classification; flow statistics; neural networks; VPN;

Networking

I. INTRODUCTION

Virtual Private Networks (VPNs) are becoming a popular

method for hackers to hide their online activities [1]. This is

helped along by the increase in ease of use of VPNs which are

no longer just a tool for remotely accessing enterprise

resources. If bad actors wish to remotely access an enterprise

network in order to steal company and trade secrets, they can

use a VPN (or multiple VPNs) in order to hide their own

location or to make it appear as if someone else was infiltrating

the network [2]. There have been a few notable cases of this

happening in recent years, such as the Sony Pictures incident

from 2014 where confidential data including personal

information about employees was stolen [3]. Other attacks of

note are the various data breaches which have been occurring

for the last number of years, such as the LinkedIn breach of

2012 which was only discovered in 2016 [4]. Approximately

167 million account details including emails and passwords

were stolen.

If the criminals that carried out these attacks were making use

of VPNs to hide their identities, then tracking them down can

prove to be challenging if not impossible. Knowing whether a

VPN has been used or not could help in the tracking down of

those responsible for attacks such as those mentioned above.

Traffic classification techniques such as data analytics and

machine learning algorithms can be employed to solve this

problem.

We present here a flow statistic-based classification method

using a multi-layered perceptron neural network to distinguish

between TCP layer network traffic that is being transmitted

over an encrypted VPN channel and normal traffic that may be

encrypted or not. In this model, TCP flows captured from

encrypted VPN sessions are analysed alongside other TCP

flows that are captured from a mix of general browsing

sessions. Flow statistics including time based and other metrics

are extracted from the captured traffic and compiled into a

dataset. This dataset is analysed using Pearson’s Correlation

Coefficient algorithm to determine the strongest features in

classifying whether the traffic belongs to a VPN or not.

The remainder of this paper is organised as follows: Section 2

presents an overview of related work in the area. Section 3

describes the capture of the flow-based dataset and the setup of

the VPN being used to generate the traffic. Section 4 describes

the experiments run in Weka using the dataset and Section 5

presents the results from the experiments. Section 6 presents

conclusions and possible future work.

II. BACKGROUND

Research involving the use of flow statistics as a classification

metric began in the early 1990s [5], [6]. Statistical features

such as packet length, inter-arrival times and the duration of

the flow were used to analyse 3 million TCP connections that

took place during 15 wide-area network traffic traces and

derive the protocols contained in the traces. Subsequent

research uses statistics gained from the first few packets on

both directions of a flow to gain efficiency and increase the

possibility of traffic classification in real time [7], [8]. To

further increase the efficiency of classification in a highly

scalable and high-speed network, signature-based traffic

identification schemes were proposed. The goal of these

schemes were to provide an increase in efficiency without

compromising classification accuracy by combining the

advantages of accuracy found in deep packet analysis (DPI)

and the advantages of speed found in port-based classification

approaches [9], [10].

Research into classification of network traffic using flow-

based statistics is not widely addressed in the literature with an

apparent focus on detecting specific types of traffic [11]. One

proposed model attempts to characterise Peer to Peer (P2P)

traffic using features extracted from multiple captured flows

which are then clustered in order to extract P2P application

behaviour [12]. Another proposed method attempts to provide

an accurate model for identifying and detecting malicious

botnet traffic using supervised machine learning along-side

flow-based features [13]. Attempts to detect and classify

encrypted traffic include a proposed method where encrypted

network traffic will be classified by calculating entropy-based

features from a packet payload and using that to create a

supervised machine learning model [14]. Another proposed

framework is a DPI system that inspects encrypted network

traffic without actually decrypting it in an effort to maintain

the privacy of the communication [15]. Traffic classification

with a focus on detecting traffic that is encapsulated within a

Proxied connection or encrypted VPN is challenging and only

now becoming a field of study. One proposed method attempts

to deal with the problem of end users using proxies as a means

to hide their identity by creating a data driven machine

learning based approach using a mixture of log-files to

represent realistic proxy use [16].

III. DATASET AND VPN SETUP

A. Dataset Capture

To create a representative dataset of VPN and non-VPN values,

real network data was captured using a number of tools.

Wireshark formed the basis of the packet capture for this

dataset. The computer system used to capture the traffic was an

Ubuntu 16.04 based virtual machine running on a Windows 10

host. The network connection used in the experiment is a

virtualised Intel PRO gigabit ethernet card. While Linux might

not be a mainstream operating system for the standard user, it

is popular among “bad actors” because of its ability to be

customised heavily according to the user’s preferences. It

allows for a finer degree of control over some of the internal

systems included such as networking stack. Using built in tools,

it is easy to automate connections and disconnections to

different networks and different network interfaces. This was a

particularly helpful feature when dealing with the capture of

VPN based packets. In normal operation, a connection to a VPN

starts with a typical TCP “hello” sequence and key exchange.

Once the connection is setup, it is only taken down whenever

the user stops using the VPN. The connection is a TCP

connection between the user’s machine and the VPN server that

is maintained until the user closes the connection. This created

some problems with the NetMate flow statistic calculation tool

as it would only output one set of statistics for a capture session

of ten hours. This was deemed to be an unrealistic scenario.

This problem with NetMate was solved using a Linux bash shell

script and the Linux system’s automatic task scheduling tool;

cron. The shell script contains a one-line command that initiates

a connection to the VPN and sets a timeout value of 590

seconds. The ‘timeout’ causes the command to quit after the set

amount of time and ‘openvpn’ is the command that will be

affected by ‘timeout’. Openvpn is a type of VPN server that can

1 https://www.alexa.com/topsites

be installed easily on many systems and is the VPN used to

generate the VPN packets needed for the dataset. In this

command ‘openvpn’ initiates the connection to the Openvpn

server that is described in the config file i.e. <openvpn-config-

file>.ovpn. Combining this command with “timeout 590s

‘openvpn-config-file’.ovpn” the automatic scheduling tool cron

is straightforward. The goal was to have this command run

every ten minutes, so the timeout value is set to 590 seconds

which leaves enough time for the connection to completely

close. Then, 10 seconds later the command is run once again.

This repeats for as long as the command is listed in cron. To

instruct cron to run this command as required, the file

/etc/crontab is edited with administrative privileges. A line is

added to the file detailing the command to be run and how often

it should be run. The line added to run the connection shell

script every 10 minutes is:

“*/10 * * * * root sh /path-to-file/connect.sh”. From left to

right, the headings of the crontab file stand for: minutes, hour,

day of month, month, week of month, user to run command

under and the actual command. This will instruct cron to run

the shell script every 10 minutes of every day of every month

as the user ‘root’. With the connection to the VPN automated

and refreshing every ten minutes, the next task was to generate

the network traffic to be captured by Wireshark. There are tools

available to generate random packets based on specific

attributes to simulate certain network environments. However,

it was preferred if the data could be captured from realistic

browsing practices. Due to the amount of data that would be

required, it would be infeasible for a person to sit and visit

websites for 24 hours a day, 7 days a week. A modified version

of the automated browsing Python script from the proxy

detection work was used in conjunction with a small selection

of the most popular Alexa top 500 sites1. This ensures that the

browsing involves some of the most recent and publicly

available sites on the web as well as some of the most popular.

For the script to browse sites in a relatively realistic fashion, the

sleep method is used in conjunction with the randint method.

The sleep function pauses the execution of the entire script.

When combined with randint, it is possible to pseudo-randomly

set the pause time for each occurrence of sleep. With the VPN

connecting and disconnecting every 10 minutes, the randint

method’s minimum value was set to 10 seconds and the

maximum value set to 300 seconds. This means that the website

that is visited by the script will be displayed for a minimum of

ten seconds and no longer than 5 minutes. In their paper, [17]

showed that users judged web pages harshly in the first 10-30

seconds. After this time had passed it was likely that users

would spend upwards of 2 minutes on the page. During the 10-

minute VPN connection period, the browse script would visit a

minimum of 2 web pages.

B. NetMate

NetMate is a bidirectional flow exporter and analyser tool used

to convert capture files of network traffic into flow records [18].

A TCP flow is a sequence of packets between two endpoints as

defined by their source IP address and port to a destination IP

address and port over a certain length of time [19]. A sequence

like this will only be considered a flow if it is monitored in both

directions. The packets captured from Wireshark meet this

requirement so they are compatible with NetMate. The

particular version of NetMate used for this dataset is Netmate-

flowcalc which is a bundle comprising of NetMate v0.9.5

packaged with NetAI modules from v0.1 [20]. The output, if

using one of the included rules files, takes the form of a comma

separated list of values. Each column corresponds to an

attribute or feature of the output. Figure 3 shows a list of the

features generated by NetMate and a description of what they

measure. The first five attributes generated are taken directly

from the TCP packet header. They include the source IP address

and port number; the destination IP address and port number

and the protocol being used and these are omitted from the final

list as they would cause the model to overfit. The rest of the

attributes in the table are flow statistics that are calculated by

NetMate. The statistics calculated for the majority of the

remaining attributes are the minimum, mean, maximum and

standard deviation. These features are similar to those produced

by another project named “flowtbag”.

The overall size of the dataset captured and processed through

NetMate was 9829 flows with 3569 flows representing VPN

traffic and 6260 flows representing Non-VPN traffic. These

were labelled vpn and normal. This overall dataset was split into

three separate sets; one for training, one for testing and one for

validation of the trained model. The original set was split into

80% training and 20% testing as this was regarded as a

generally popular split according to the literature. The resulting

testing set was then split further following the same original

split, 80/20, resulting in the final testing and validation datasets.

The training dataset contained 7863 instances. The final testing

dataset contained 1257 instances and the validation dataset

contained 253 instances.

C. VPN Setup: Streisand on AWS

We used the AWS platform to host a virtual machine which acts

as a VPN server. The server that was chosen was the t2.micro

Elastic Compute 2 (EC2) instance which is one of the more

basic types, but more than adequate to run a fully featured VPN

server. It contains one virtual CPU core and one gigabyte of

RAM. The software used to setup the server to allow it to

provide VPN functionality is called Streisand2. Streisand sets

up a new remote server with the Ubuntu 16.04 operating system

that is capable of running various services such as L2TP/IPsec,

OpenVPN and other methods of tunnelling network traffic via

VPN.

2 https://github.com/StreisandEffect/streisand

Fig. 1. Description of netmate statistical features.

The setup is heavily automated, relying on an automation tool

named Ansible that is typically used to provision and configure

files and packages on remote servers. The only input required

from the user is to choose a cloud provider, physical region for

the server and the API information for the cloud platform that

the user wishes to set the server up on. Once this information

has been provided, the script begins the creation and initial

setup process for the remote server, installing the required

software and tools needed. Once the server has been fully set

up, several files are created on the user’s local computer which

contain instructions on getting started. For the experiments run,

the OpenVPN protocol is the type of VPN being tested. The

reason for choosing OpenVPN is because it is well-known and

popular due to its very simple configuration. Servers and clients

are widely supported across many different platforms i.e. an

OpenVPN server running on a Linux/Unix based host can be

accessed by a Windows client and vice versa. There are also

client applications available for mobile platforms such as

Android and iOS, making it suitable for on-the-go VPN use.

IV. WEKA EXPERIMENT

The Weka (Waikato Environment for Knowledge Analysis)

workbench is a collection of standard machine learning

algorithms and data pre-processing tools. It is designed to allow

researchers to quickly apply existing methods of machine

learning to new datasets [21]. Weka includes methods for many

types of machine learning problem including: regression,

classification, clustering and attribute selection. Weka includes

a few ways of setting up experiments: Explorer, Knowledge

Flow, Experimenter and Workbench. Explorer is a graphical

user interface which provides access to all of the facilities of

Weka using menu selection and forms. Knowledge flow is an

interface that allows you to visualise and control the stream of

data when using larger datasets. A drawback of Explorer is that

datasets are loaded in their entirety to the computers RAM,

meaning that datasets that need a larger amount of memory than

the computer can provide will not be able to be used.

Knowledge flow enables a researcher to specify a data stream

by connecting components representing data sources, pre-

processing tools, learning algorithms, evaluation methods and

visualisation modules. If the filters and learning algorithms are

capable of incremental learning, then the dataset will be loaded

into memory in increments causing memory to be saved.

Experimenter is designed to answer the question of which

learning algorithms and parameters values work best for the

given problem. This can be accomplished manually using

Explorer. However, Experimenter allows the researcher to

automate the process by making it easy to run different

classifiers with different parameters on multiple datasets,

collect the results and performance statistics and then analyse

them to see what combination works best for the given problem.

The last interface is called Workbench. It is a unified graphical

interface which incorporates features from the other three into

one application. It is highly configurable and allows for the

creation of a highly tailored interface.

The method used for the experiments is based on Explorer. This

is the most straight-forward interface to using Weka and can be

used to load in datasets, run experiments and analyse the results.

Weka’s native data storage method is the ARFF format,

however it provides methods to convert data to ARFF from

spreadsheets and databases. It can also accept comma-separated

value (CSV) files, ASCII MATLAB files, LIBSVM etc. and

also provides methods to convert them to the ARFF format.

CSV files that have had the ARFF attribute information added

to them manually can also be accepted as long as Weka is able

to interpret the ARFF headers correctly. The ARFF header

helps Weka to identify what is an attribute, what is an instance

of the data and what are the classes (if any). Once the data has

been loaded into Weka, it can be modified using the Pre-

process tab. Modifications include the ability to remove

attributes, add instances manually and apply various filters to

the entire dataset. Modified versions of the dataset can be saved

to their own file, leaving the original dataset intact for future

use or modification. One of the most useful modifications is the

ability to split the original dataset into separate training, testing

and validation sets using the provided filters. The next tab is

Classify and it is here that the various machine learning

algorithms are trained to perform classification or regression

and evaluate the results. The dataset that is loaded into the pre-

process tab is seamlessly transferred across to the classify tab.

If not already done, the dataset can be split into training and

testing here using the “Test options” selections or, if already

completed, the test set can be specified. The type of

classification or regression algorithm can be chosen here as well

as from the large selection that Weka provides, including Linear

Regression, Multilayer Perceptron, Naïve Bayes and C4.5

decision tree algorithms. All of the classifiers are adjustable via

another Weka dialogue which enables customisation via drop

down menus and textboxes. Once setup the algorithm can be

trained and tested by pressing the start button and once the

model has been successfully trained and tested, the results are

shown in the “Classifier output”. The Cluster and Associate

tabs were not used during the experiments described in this

chapter. The Select attributes tab gives access to several

methods for attribute selection. This involves an attribute

evaluator and a searching method. Both are selected and

configured in the same way that options are chosen and

configured in the other tabs. Selection can be performed using

either the full dataset or by using cross-validation. The full

dataset option was used for this chapter’s experiments. This

allows the researcher to perform feature selection using a

number of different feature selection algorithms.

A. Feature Selection

The feature selection model used was the Weka model

CorrelationAttributeEval which is a model that is based on

Pearson’s Correlation Coefficient model. This is a measure of

the linear correlation between two variables. The output of the

model is a value between +1 and -1, where +1 is total positive

linear correlation, 0 is no linear correlation and -1 is total

negative linear correlation. In Weka, the search method Ranker

is required to run CorrelationAttributeEval. Ranker ranks

attributes by their individual evaluations i.e. from highest

positive linear correlation to lowest negative linear correlation.

It provides options to set a threshold by which attributes can be

discarded, with the default being that no attributes are

discarded. Through trial and error, the threshold for the

experiments run in this chapter was set to 0.5. This threshold is

the cut-off point for whether an attribute of the data is kept as a

feature or discarded. The result of this selection was a reduction

from 44 features to the 10 features that were calculated to have

a linear correlation above 5, a list of which is shown in figure

4. The lowest correlation was 0.544 for total_fvolume and the

highest was 0.742 for duration.

TABLE I. CORRELATION COEFFICIENTS

Attribute Name Correlation

Coefficient

total_fpackets 0.561

total_fvolume 0.544

max_fpktl 0.644

max_bpktl 0.724

duration 0.742

mean_active 0.677

max_active 0.57

std_active 0.55

fpsh_cnt 0.587

total_fhlen 0.561

B. Resampling the dataset

The original, full dataset was edited to create a training dataset

of 7863 by resampling using the options outlined in figure 5.

The 80/20 percent split can be seen in sampleSizePercent as

“80”.

To create the testing dataset, the original dataset was again

resampled using the same criteria, but the invertSelection option

was changed from false to true. This gives the opposite output

of the first run and the output is a dataset of 1510 instances

which is the 20% from the 80/20 split. These instances were

then again resampled following the above steps to create the

final testing dataset and the final validation dataset. Again, this

followed the 80/20 percent split, with the 80% split being the

testing set and the remaining the 20% being the validation set.

The resulting datasets were 1257 instances for the testing

dataset, or approximately 12% of the original dataset, and 253

instances for the validation dataset, approximately 2-3% of the

original dataset.

C. Neural Network Setup

The Weka model used for classifying whether the instances

from the dataset are traffic coming from a VPN or not is the

MultilayerPerceptron model. This model is based on a standard

artificial Neural Network that is trained using back propagation.

Fig. 2. The Weka Resample dialogue

Fig. 3. Neural Network Weka Configuration

This model offers a large amount of customisation, with options

to build a network by hand, let an algorithm build the network

or a mixture of both. Figure 6 shows the configuration used to

setup the neural network model used for the classification

experiments. This setup was found to be the best performing

configuration when compared to other networks with different

configurations with regards to accuracy, training time and

avoiding the problem of overfitting the data. Ideally for this

model to be used in a real-world application, the training time

needs to be kept to a minimum whilst preserving as much

accuracy as possible. For the purposes of classifying VPN and

non-VPN traffic it was decided to allow Weka to create a fully

connected network. This is accomplished by using the two

options autoBuild and hiddenLayers. Autobuild is the option

which instructs Weka whether to build a fully connected

network or not with the two options being true or false.

HiddenLayers is where the hidden nodes of the network are

defined. The value shown in figure 6 is one of the provided

wildcard values. ‘a’ creates a hidden layer by summing together

the number of attributes and classes and then dividing the total

in half. So, for 10 attributes and two classes, the number of

hidden layers is set to six. Figure 7 shows the completed

network, ready to be trained using the training dataset.

 Fig. 4. Fully connected Neural Network

Once the model is configured, it is ready to train using the

dataset currently loaded into the “Pre-process” tab. This

network was trained using the above options and the total time

taken to train the network and build the classification model

was approximately 10 seconds using an 8-core processor.

Testing was completed a few seconds later using the testing

dataset. Validation of the result using the validation dataset was

completed by loading it in as a test set and then re-evaluating

the already trained model.

V. RESULTS

The results shown in Table 2 shows that the overall accuracy of

detection for the neural network in the post-training test was

approximately 94%. That is 1178 correctly classified instances

out of a testing set of 1257. The average Precision, Recall and

F-Measure of 0.937 backs up the accuracy and together they

show that in the post training test using a separate sample of test

data, the neural network is capable of distinguishing between

VPN and non-VPN traffic when using flow-based features.

TABLE II POST-TRAINING TEST RESULTS

Correctly Classified

Instances

1178 / 1257 (93.7152%)

Incorrectly Classified

Instances

79 / 1257 (6.2848%)

Average True Positive Rate 0.937

Average False Positive Rate 0.081

Average Precision 0.937

Average Recall 0.937

Average F-Measure 0.937

Table 3 shows the confusion matrix for the post-training tests.

It provides details on the correctly and incorrectly classified

instances and how they are distributed as true positive and

negative and false positive and negative. The goal is to keep the

false positive and false negative as low as possible and figure 9

shows that this has indeed been accomplished with the number

of false positives (i.e. Normal traffic that has been incorrectly

classified as a VPN) being 31 instances. The number of false

negatives (i.e. VPN traffic that has been incorrectly classified as

Normal) was 48 instances.

TABLE III CONFUSION MATRIX FOR POST-TRAINING TEST

Classified as VPN Normal

VPN 408 48

Normal 31 770

Table 4 shows the results for the validation test results. The

validation test was performed on data that had been kept

separate from the training process. The data was classified by

the trained model as new data that it had never encountered

before, therefore imitating real world conditions. The result was

an accuracy rating of approximately 92% or 232 correctly

classified instances out of 253.

TABLE IV VALIDATION TEST RESULTS

Correctly Classified

Instances

232 / 253 (91.6996%)

Incorrectly Classified

Instances

21 / 253 (8.3004%)

Average True Positive Rate 0.917

Average False Positive Rate 0.113

Average Precision 0.917

Average Recall 0.917

Average F-Measure 0.916

Table 5 shows the confusion matrix for the validation test. This

provides details on the correctly and incorrectly classified

instances and how they are distributed as true positive and

negative and false positive and negative. The number of false

positives for the validation test was seven and the number of

false negatives was 14.

TABLE V CONFUSION MATRIX FOR VALIDATION TEST

Classified as VPN Normal

VPN 78 14

Normal 7 154

VI. SUMMARY

In this paper we have successfully demonstrated the

effectiveness of using a multi-layered perceptron neural

network model trained using TCP flow-based features to

classify network traffic as either originating from a VPN or

not. The flow-based features discovered using Pearson’s

Correlation Coefficient model can be said to accurately

distinguish between VPN and non-VPN traffic as shown by

the resulting accuracies of 92% and 93%. Low false positive

rates also make this an attractive approach for law

enforcement uses. As future work we plan to investigate the

usefulness of this framework for other applications and

investigate other machine learning algorithms.

REFERENCES

[1] J. T. Harmening, “Virtual Private Networks,” in

Computer and Information Security Handbook,

Elsevier, 2017, pp. 843–856.

[2] S. Geetha and A. V. Phamila, Combating Security

Breaches and Criminal Activity in the Digital Sphere.

2016.

[3] A. Peterson, “The Sony Pictures hack, explained.,”

Washington Post, 2014.

[4] T. Hunt, “Observations and thoughts on the LinkedIn

data breach,” troyhunt.com, 2016. [Online]. Available:

https://www.troyhunt.com/observations-and-thoughts-

on-the-linkedin-data-breach/. [Accessed: 06-Dec-

2017].

[5] V. Paxson, S. Floyd, V. Paxson, and S. Floyd, “Wide-

area traffic,” in Proceedings of the conference on

Communications architectures, protocols and

applications - SIGCOMM ’94, 1994, vol. 24, no. 4, pp.

257–268.

[6] V. Paxson, “Empirically Derived Analytic Models of

Wide-Area TCP Connections,” IEEE/ACM Trans.

Netw., vol. 2, no. 4, pp. 316–336, 1994.

[7] G. Gómez Sena and P. Belzarena, “Early Traffic

Classification using Support Vector Machines,” Proc.

LANC, p. 60, 2009.

[8] W. Li, M. Canini, A. W. Moore, and R. Bolla,

“Efficient application identification and the temporal

and spatial stability of classification schema,” Comput.

Networks, vol. 53, no. 6, pp. 790–809, Apr. 2009.

[9] S. H. Yeganeh, M. Eftekhar, Y. Ganjali, R. Keralapura,

and A. Nucci, “CUTE: Traffic Classification Using

TErms,” in 2012 21st International Conference on

Computer Communications and Networks (ICCCN),

2012, pp. 1–9.

[10] G. Aceto, A. Dainotti, W. de Donato, and A. Pescape,

“PortLoad: Taking the Best of Two Worlds in Traffic

Classification,” in 2010 INFOCOM IEEE Conference

on Computer Communications Workshops, 2010, pp.

1–5.

[11] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A.

A. Ghorbani, “Characterization of Encrypted and VPN

Traffic using Time-related Features,” in Proceedings of

the 2nd International Conference on Information

Systems Security and Privacy, 2016, pp. 407–414.

[12] D. Wang, L. Zhang, Zhenlong Yuan, Y. Xue, and Y.

Dong, “Characterizing Application Behaviors for

classifying P2P traffic,” in 2014 International

Conference on Computing, Networking and

Communications (ICNC), 2014, pp. 21–25.

[13] M. Stevanovic and J. M. Pedersen, “An efficient flow-

based botnet detection using supervised machine

learning,” in 2014 International Conference on

Computing, Networking and Communications (ICNC),

2014, pp. 797–801.

[14] M. S. I. Mamun, A. A. Ghorbani, and N. Stakhanova,

“An Entropy Based Encrypted Traffic Classifier,” in

Information and Communications Security, 2016, pp.

282–294.

[15] J. Sherry et al., “BlindBox,” ACM SIGCOMM Comput.

Commun. Rev., vol. 45, no. 5, pp. 213–226, Aug. 2015.

[16] V. Aghaei-Foroushani and A. N. Zincir-Heywood, “A

Proxy Identifier Based on Patterns in Traffic Flows,” in

2015 IEEE 16th International Symposium on High

Assurance Systems Engineering, 2015, pp. 118–125.

[17] C. Liu, R. W. White, and S. Dumais, “Understanding

web browsing behaviors through Weibull analysis of

dwell time,” in Proceeding of the 33rd international

ACM SIGIR conference on Research and development

in information retrieval - SIGIR ’10, 2010, p. 379.

[18] F. Haddadi and A. N. Zincir-Heywood, “Benchmarking

the Effect of Flow Exporters and Protocol Filters on

Botnet Traffic Classification,” IEEE Syst. J., vol. 10,

no. 4, pp. 1390–1401, Dec. 2016.

[19] S. Stibler, N. Brownlee, and G. Ruth, “RTFM: New

Attributes for Traffic Flow Measurement.” pp. 1–18,

1999.

[20] D. Arndt, “NetMate-flowcalc « Daniel Arndt,” 2011.

[Online]. Available:

https://dan.arndt.ca/projects/netmate-flowcalc/.

[Accessed: 04-Oct-2017].

[21] E. Frank, M. A. Hall, and I. H. Witten, “The WEKA

Workbench Online Appendix for ‘Data Mining:

Practical Machine Learning Tools and Techniques’

Morgan Kaufmann, Fourth Edition, 2016,” Morgan

Kaufmann, Fourth Ed., 2016.

