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Abstract— There has been a growth in popularity of privacy in 

the personal computing space and this has influenced the IT 

industry. There is more demand for websites to use more secure 

and privacy focused technologies such as HTTPS and TLS. This 

has had a knock-on effect of increasing the popularity of Virtual 

Private Networks (VPNs). There are now more VPN offerings than 

ever before and some are exceptionally simple to setup. 

Unfortunately, this ease of use means that businesses will have a 

need to be able to classify whether an incoming connection to their 

network is from an original IP address or if it is being proxied 

through a VPN. A method to classify an incoming connection is to 

make use of machine learning to learn the general patterns of VPN 

and non-VPN traffic in order to build a model capable of 

distinguishing between the two in real time. This paper outlines a 

framework built on a multilayer perceptron neural network model 

capable of achieving this goal.  

Keywords—classification; flow statistics; neural networks; VPN; 

Networking 

I. INTRODUCTION 

Virtual Private Networks (VPNs) are becoming a popular 

method for hackers to hide their online activities [1]. This is 

helped along by the increase in ease of use of VPNs which are 

no longer just a tool for remotely accessing enterprise 

resources. If bad actors wish to remotely access an enterprise 

network in order to steal company and trade secrets, they can 

use a VPN (or multiple VPNs) in order to hide their own 

location or to make it appear as if someone else was infiltrating 

the network [2]. There have been a few notable cases of this 

happening in recent years, such as the Sony Pictures incident 

from 2014 where confidential data including personal 

information about employees was stolen [3]. Other attacks of 

note are the various data breaches which have been occurring 

for the last number of years, such as the LinkedIn breach of 

2012 which was only discovered in 2016 [4]. Approximately 

167 million account details including emails and passwords 

were stolen.  

If the criminals that carried out these attacks were making use 

of VPNs to hide their identities, then tracking them down can 

prove to be challenging if not impossible. Knowing whether a 

VPN has been used or not could help in the tracking down of 

those responsible for attacks such as those mentioned above. 

Traffic classification techniques such as data analytics and 

machine learning algorithms can be employed to solve this 

problem. 

We present here a flow statistic-based classification method 

using a multi-layered perceptron neural network to distinguish 

between TCP layer network traffic that is being transmitted 

over an encrypted VPN channel and normal traffic that may be 

encrypted or not. In this model, TCP flows captured from 

encrypted VPN sessions are analysed alongside other TCP 

flows that are captured from a mix of general browsing 

sessions. Flow statistics including time based and other metrics 

are extracted from the captured traffic and compiled into a 

dataset. This dataset is analysed using Pearson’s Correlation 

Coefficient algorithm to determine the strongest features in 

classifying whether the traffic belongs to a VPN or not.  

The remainder of this paper is organised as follows: Section 2 

presents an overview of related work in the area. Section 3 

describes the capture of the flow-based dataset and the setup of 

the VPN being used to generate the traffic. Section 4 describes 

the experiments run in Weka using the dataset and Section 5 

presents the results from the experiments. Section 6 presents 

conclusions and possible future work. 

II. BACKGROUND 

Research involving the use of flow statistics as a classification 

metric began in the early 1990s [5], [6]. Statistical features 

such as packet length, inter-arrival times and the duration of 

the flow were used to analyse 3 million TCP connections that 

took place during 15 wide-area network traffic traces and 

derive the protocols contained in the traces. Subsequent 

research uses statistics gained from the first few packets on 

both directions of a flow to gain efficiency and increase the 

possibility of traffic classification in real time [7], [8]. To 

further increase the efficiency of classification in a highly 

scalable and high-speed network, signature-based traffic 

identification schemes were proposed. The goal of these 

schemes were to provide an increase in efficiency without 

compromising classification accuracy by combining the 

advantages of accuracy found in deep packet analysis (DPI) 

and the advantages of speed found in port-based classification 

approaches [9], [10].  

Research into classification of network traffic using flow-

based statistics is not widely addressed in the literature with an 

apparent focus on detecting specific types of traffic [11]. One 



proposed model attempts to characterise Peer to Peer (P2P) 

traffic using features extracted from multiple captured flows 

which are then clustered in order to extract P2P application 

behaviour [12]. Another proposed method attempts to provide 

an accurate model for identifying and detecting malicious 

botnet traffic using supervised machine learning along-side 

flow-based features [13]. Attempts to detect and classify 

encrypted traffic include a proposed method where encrypted 

network traffic will be classified by calculating entropy-based 

features from a packet payload and using that to create a 

supervised machine learning model [14]. Another proposed 

framework is a DPI system that inspects encrypted network 

traffic without actually decrypting it in an effort to maintain 

the privacy of the communication [15]. Traffic classification 

with a focus on detecting traffic that is encapsulated within a 

Proxied connection or encrypted VPN is challenging and only 

now becoming a field of study. One proposed method attempts 

to deal with the problem of end users using proxies as a means 

to hide their identity by creating a data driven machine 

learning based approach using a mixture of log-files to 

represent realistic proxy use [16]. 

III. DATASET AND VPN SETUP 

A. Dataset Capture 

To create a representative dataset of VPN and non-VPN values, 

real network data was captured using a number of tools. 

Wireshark formed the basis of the packet capture for this 

dataset. The computer system used to capture the traffic was an 

Ubuntu 16.04 based virtual machine running on a Windows 10 

host. The network connection used in the experiment is a 

virtualised Intel PRO gigabit ethernet card. While Linux might 

not be a mainstream operating system for the standard user, it 

is popular among “bad actors” because of its ability to be 

customised heavily according to the user’s preferences. It 

allows for a finer degree of control over some of the internal 

systems included such as networking stack. Using built in tools, 

it is easy to automate connections and disconnections to 

different networks and different network interfaces. This was a 

particularly helpful feature when dealing with the capture of 

VPN based packets. In normal operation, a connection to a VPN 

starts with a typical TCP “hello” sequence and key exchange. 

Once the connection is setup, it is only taken down whenever 

the user stops using the VPN. The connection is a TCP 

connection between the user’s machine and the VPN server that 

is maintained until the user closes the connection. This created 

some problems with the NetMate flow statistic calculation tool 

as it would only output one set of statistics for a capture session 

of ten hours. This was deemed to be an unrealistic scenario. 

This problem with NetMate was solved using a Linux bash shell 

script and the Linux system’s automatic task scheduling tool; 

cron. The shell script contains a one-line command that initiates 

a connection to the VPN and sets a timeout value of 590 

seconds. The ‘timeout’ causes the command to quit after the set 

amount of time and ‘openvpn’ is the command that will be 

affected by ‘timeout’. Openvpn is a type of VPN server that can 

                                                           
1 https://www.alexa.com/topsites 

be installed easily on many systems and is the VPN used to 

generate the VPN packets needed for the dataset. In this 

command ‘openvpn’ initiates the connection to the Openvpn 

server that is described in the config file i.e. <openvpn-config-

file>.ovpn. Combining this command with “timeout 590s 

‘openvpn-config-file’.ovpn” the automatic scheduling tool cron 

is straightforward. The goal was to have this command run 

every ten minutes, so the timeout value is set to 590 seconds 

which leaves enough time for the connection to completely 

close. Then, 10 seconds later the command is run once again. 

This repeats for as long as the command is listed in cron. To 

instruct cron to run this command as required, the file 

/etc/crontab is edited with administrative privileges. A line is 

added to the file detailing the command to be run and how often 

it should be run. The line added to run the connection shell 

script every 10 minutes is:  

“*/10 * * * * root sh /path-to-file/connect.sh”. From left to 

right, the headings of the crontab file stand for: minutes, hour, 

day of month, month, week of month, user to run command 

under and the actual command. This will instruct cron to run 

the shell script every 10 minutes of every day of every month 

as the user ‘root’. With the connection to the VPN automated 

and refreshing every ten minutes, the next task was to generate 

the network traffic to be captured by Wireshark. There are tools 

available to generate random packets based on specific 

attributes to simulate certain network environments. However, 

it was preferred if the data could be captured from realistic 

browsing practices. Due to the amount of data that would be 

required, it would be infeasible for a person to sit and visit 

websites for 24 hours a day, 7 days a week. A modified version 

of the automated browsing Python script from the proxy 

detection work was used in conjunction with a small selection 

of the most popular Alexa top 500 sites1. This ensures that the 

browsing involves some of the most recent and publicly 

available sites on the web as well as some of the most popular. 

For the script to browse sites in a relatively realistic fashion, the 

sleep method is used in conjunction with the randint method. 

The sleep function pauses the execution of the entire script. 

When combined with randint, it is possible to pseudo-randomly 

set the pause time for each occurrence of sleep. With the VPN 

connecting and disconnecting every 10 minutes, the randint 

method’s minimum value was set to 10 seconds and the 

maximum value set to 300 seconds. This means that the website 

that is visited by the script will be displayed for a minimum of 

ten seconds and no longer than 5 minutes. In their paper, [17] 

showed that users judged web pages harshly in the first 10-30 

seconds. After this time had passed it was likely that users 

would spend upwards of 2 minutes on the page. During the 10-

minute VPN connection period, the browse script would visit a 

minimum of 2 web pages.  
 

 

 

 



B. NetMate 

NetMate is a bidirectional flow exporter and analyser tool used 

to convert capture files of network traffic into flow records [18]. 

A TCP flow is a sequence of packets between two endpoints as 

defined by their source IP address and port to a destination IP 

address and port over a certain length of time [19]. A sequence 

like this will only be considered a flow if it is monitored in both 

directions. The packets captured from Wireshark meet this 

requirement so they are compatible with NetMate. The 

particular version of NetMate used for this dataset is Netmate-

flowcalc which is a bundle comprising of NetMate v0.9.5 

packaged with NetAI modules from v0.1 [20]. The output, if 

using one of the included rules files, takes the form of a comma 

separated list of values. Each column corresponds to an 

attribute or feature of the output. Figure 3 shows a list of the 

features generated by NetMate and a description of what they 

measure. The first five attributes generated are taken directly 

from the TCP packet header. They include the source IP address 

and port number; the destination IP address and port number 

and the protocol being used and these are omitted from the final 

list as they would cause the model to overfit. The rest of the 

attributes in the table are flow statistics that are calculated by 

NetMate. The statistics calculated for the majority of the 

remaining attributes are the minimum, mean, maximum and 

standard deviation. These features are similar to those produced 

by another project named “flowtbag”.  

The overall size of the dataset captured and processed through 

NetMate was 9829 flows with 3569 flows representing VPN 

traffic and 6260 flows representing Non-VPN traffic. These 

were labelled vpn and normal. This overall dataset was split into 

three separate sets; one for training, one for testing and one for 

validation of the trained model. The original set was split into 

80% training and 20% testing as this was regarded as a 

generally popular split according to the literature. The resulting 

testing set was then split further following the same original 

split, 80/20, resulting in the final testing and validation datasets. 

The training dataset contained 7863 instances. The final testing 

dataset contained 1257 instances and the validation dataset 

contained 253 instances.  

C. VPN Setup: Streisand on AWS  

We used the AWS platform to host a virtual machine which acts 

as a VPN server. The server that was chosen was the t2.micro 

Elastic Compute 2 (EC2) instance which is one of the more 

basic types, but more than adequate to run a fully featured VPN 

server. It contains one virtual CPU core and one gigabyte of 

RAM. The software used to setup the server to allow it to 

provide VPN functionality is called Streisand2. Streisand sets 

up a new remote server with the Ubuntu 16.04 operating system 

that is capable of running various services such as L2TP/IPsec, 

OpenVPN and other methods of tunnelling network traffic via 

VPN. 

                                                           
2 https://github.com/StreisandEffect/streisand 

 
 

Fig. 1. Description of netmate statistical features. 

 

The setup is heavily automated, relying on an automation tool 

named Ansible that is typically used to provision and configure 

files and packages on remote servers. The only input required 

from the user is to choose a cloud provider, physical region for 

the server and the API information for the cloud platform that 

the user wishes to set the server up on. Once this information 

has been provided, the script begins the creation and initial 

setup process for the remote server, installing the required 

software and tools needed. Once the server has been fully set 

up, several files are created on the user’s local computer which 

contain instructions on getting started. For the experiments run, 

the OpenVPN protocol is the type of VPN being tested. The 

reason for choosing OpenVPN is because it is well-known and 

popular due to its very simple configuration. Servers and clients 

are widely supported across many different platforms i.e. an 

OpenVPN server running on a Linux/Unix based host can be 

accessed by a Windows client and vice versa. There are also 

client applications available for mobile platforms such as 

Android and iOS, making it suitable for on-the-go VPN use. 

IV. WEKA EXPERIMENT 

The Weka (Waikato Environment for Knowledge Analysis) 

workbench is a collection of standard machine learning 

algorithms and data pre-processing tools. It is designed to allow 

researchers to quickly apply existing methods of machine 

learning to new datasets [21]. Weka includes methods for many 

types of machine learning problem including: regression, 

classification, clustering and attribute selection. Weka includes 

a few ways of setting up experiments: Explorer, Knowledge 

Flow, Experimenter and Workbench. Explorer is a graphical 

user interface which provides access to all of the facilities of 

Weka using menu selection and forms. Knowledge flow is an 



interface that allows you to visualise and control the stream of 

data when using larger datasets. A drawback of Explorer is that 

datasets are loaded in their entirety to the computers RAM, 

meaning that datasets that need a larger amount of memory than 

the computer can provide will not be able to be used. 

Knowledge flow enables a researcher to specify a data stream 

by connecting components representing data sources, pre-

processing tools, learning algorithms, evaluation methods and 

visualisation modules. If the filters and learning algorithms are 

capable of incremental learning, then the dataset will be loaded 

into memory in increments causing memory to be saved. 

Experimenter is designed to answer the question of which 

learning algorithms and parameters values work best for the 

given problem. This can be accomplished manually using 

Explorer. However, Experimenter allows the researcher to 

automate the process by making it easy to run different 

classifiers with different parameters on multiple datasets, 

collect the results and performance statistics and then analyse 

them to see what combination works best for the given problem. 

The last interface is called Workbench. It is a unified graphical 

interface which incorporates features from the other three into 

one application. It is highly configurable and allows for the 

creation of a highly tailored interface. 

The method used for the experiments is based on Explorer. This 

is the most straight-forward interface to using Weka and can be 

used to load in datasets, run experiments and analyse the results. 

Weka’s native data storage method is the ARFF format, 

however it provides methods to convert data to ARFF from 

spreadsheets and databases. It can also accept comma-separated 

value (CSV) files, ASCII MATLAB files, LIBSVM etc. and 

also provides methods to convert them to the ARFF format. 

CSV files that have had the ARFF attribute information added 

to them manually can also be accepted as long as Weka is able 

to interpret the ARFF headers correctly. The ARFF header 

helps Weka to identify what is an attribute, what is an instance 

of the data and what are the classes (if any). Once the data has 

been loaded into Weka, it can be modified using the Pre-

process tab. Modifications include the ability to remove 

attributes, add instances manually and apply various filters to 

the entire dataset. Modified versions of the dataset can be saved 

to their own file, leaving the original dataset intact for future 

use or modification. One of the most useful modifications is the 

ability to split the original dataset into separate training, testing 

and validation sets using the provided filters. The next tab is 

Classify and it is here that the various machine learning 

algorithms are trained to perform classification or regression 

and evaluate the results. The dataset that is loaded into the pre-

process tab is seamlessly transferred across to the classify tab. 

If not already done, the dataset can be split into training and 

testing here using the “Test options” selections or, if already 

completed, the test set can be specified. The type of 

classification or regression algorithm can be chosen here as well 

as from the large selection that Weka provides, including Linear 

Regression, Multilayer Perceptron, Naïve Bayes and C4.5 

decision tree algorithms. All of the classifiers are adjustable via 

another Weka dialogue which enables customisation via drop 

down menus and textboxes. Once setup the algorithm can be 

trained and tested by pressing the start button and once the 

model has been successfully trained and tested, the results are 

shown in the “Classifier output”. The Cluster and Associate 

tabs were not used during the experiments described in this 

chapter. The Select attributes tab gives access to several 

methods for attribute selection. This involves an attribute 

evaluator and a searching method. Both are selected and 

configured in the same way that options are chosen and 

configured in the other tabs. Selection can be performed using 

either the full dataset or by using cross-validation. The full 

dataset option was used for this chapter’s experiments. This 

allows the researcher to perform feature selection using a 

number of different feature selection algorithms. 

A. Feature Selection 

The feature selection model used was the Weka model 

CorrelationAttributeEval which is a model that is based on 

Pearson’s Correlation Coefficient model. This is a measure of 

the linear correlation between two variables. The output of the 

model is a value between +1 and -1, where +1 is total positive 

linear correlation, 0 is no linear correlation and -1 is total 

negative linear correlation. In Weka, the search method Ranker 

is required to run CorrelationAttributeEval. Ranker ranks 

attributes by their individual evaluations i.e. from highest 

positive linear correlation to lowest negative linear correlation. 

It provides options to set a threshold by which attributes can be 

discarded, with the default being that no attributes are 

discarded. Through trial and error, the threshold for the 

experiments run in this chapter was set to 0.5. This threshold is 

the cut-off point for whether an attribute of the data is kept as a 

feature or discarded. The result of this selection was a reduction 

from 44 features to the 10 features that were calculated to have 

a linear correlation above 5, a list of which is shown in figure 

4. The lowest correlation was 0.544 for total_fvolume and the 

highest was 0.742 for duration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

TABLE I. CORRELATION COEFFICIENTS  

Attribute Name Correlation 

Coefficient 

total_fpackets 0.561 

total_fvolume 0.544 

max_fpktl 0.644 

max_bpktl 0.724 

duration 0.742 

mean_active 0.677 

max_active 0.57 

std_active 0.55 

fpsh_cnt 0.587 

total_fhlen 0.561 

B. Resampling the dataset  

The original, full dataset was edited to create a training dataset 

of 7863 by resampling using the options outlined in figure 5. 

The 80/20 percent split can be seen in sampleSizePercent as 

“80”. 

To create the testing dataset, the original dataset was again 

resampled using the same criteria, but the invertSelection option 

was changed from false to true. This gives the opposite output 

of the first run and the output is a dataset of 1510 instances 

which is the 20% from the 80/20 split. These instances were 

then again resampled following the above steps to create the 

final testing dataset and the final validation dataset. Again, this 

followed the 80/20 percent split, with the 80% split being the 

testing set and the remaining the 20% being the validation set. 

The resulting datasets were 1257 instances for the testing 

dataset, or approximately 12% of the original dataset, and 253 

instances for the validation dataset, approximately 2-3% of the 

original dataset. 

C. Neural Network Setup 

The Weka model used for classifying whether the instances 

from the dataset are traffic coming from a VPN or not is the 

MultilayerPerceptron model. This model is based on a standard 

artificial Neural Network that is trained using back propagation. 

 

 
 

Fig. 2. The Weka Resample dialogue 

 

 
 
Fig. 3. Neural Network Weka Configuration 

 

This model offers a large amount of customisation, with options 

to build a network by hand, let an algorithm build the network 

or a mixture of both. Figure 6 shows the configuration used to 

setup the neural network model used for the classification 

experiments. This setup was found to be the best performing 

configuration when compared to other networks with different 

configurations with regards to accuracy, training time and 

avoiding the problem of overfitting the data. Ideally for this 

model to be used in a real-world application, the training time 



needs to be kept to a minimum whilst preserving as much 

accuracy as possible. For the purposes of classifying VPN and 

non-VPN traffic it was decided to allow Weka to create a fully 

connected network. This is accomplished by using the two 

options autoBuild and hiddenLayers. Autobuild is the option 

which instructs Weka whether to build a fully connected 

network or not with the two options being true or false. 

HiddenLayers is where the hidden nodes of the network are 

defined. The value shown in figure 6 is one of the provided 

wildcard values. ‘a’ creates a hidden layer by summing together 

the number of attributes and classes and then dividing the total 

in half. So, for 10 attributes and two classes, the number of 

hidden layers is set to six. Figure 7 shows the completed 

network, ready to be trained using the training dataset. 

 

 
 

 Fig. 4. Fully connected Neural Network 

 

Once the model is configured, it is ready to train using the 

dataset currently loaded into the “Pre-process” tab. This 

network was trained using the above options and the total time 

taken to train the network and build the classification model 

was approximately 10 seconds using an 8-core processor. 

Testing was completed a few seconds later using the testing 

dataset. Validation of the result using the validation dataset was 

completed by loading it in as a test set and then re-evaluating 

the already trained model. 

V. RESULTS 

The results shown in Table 2 shows that the overall accuracy of 

detection for the neural network in the post-training test was 

approximately 94%. That is 1178 correctly classified instances 

out of a testing set of 1257. The average Precision, Recall and 

F-Measure of 0.937 backs up the accuracy and together they 

show that in the post training test using a separate sample of test 

data, the neural network is capable of distinguishing between 

VPN and non-VPN traffic when using flow-based features. 

 

 

 

TABLE II  POST-TRAINING TEST RESULTS 

Correctly Classified 

Instances 

1178 / 1257 (93.7152%) 

Incorrectly Classified 

Instances 

79 / 1257 (6.2848%) 

Average True Positive Rate 0.937 

Average False Positive Rate 0.081 

Average Precision 0.937 

Average Recall 0.937 

Average F-Measure 0.937 

 

Table 3 shows the confusion matrix for the post-training tests. 

It provides details on the correctly and incorrectly classified 

instances and how they are distributed as true positive and 

negative and false positive and negative. The goal is to keep the 

false positive and false negative as low as possible and figure 9 

shows that this has indeed been accomplished with the number 

of false positives (i.e. Normal traffic that has been incorrectly 

classified as a VPN) being 31 instances. The number of false 

negatives (i.e. VPN traffic that has been incorrectly classified as 

Normal) was 48 instances. 

 

TABLE III   CONFUSION MATRIX FOR POST-TRAINING TEST 

Classified as  VPN Normal 

VPN 408 48 

Normal 31 770 

 

Table 4 shows the results for the validation test results. The 

validation test was performed on data that had been kept 

separate from the training process. The data was classified by 

the trained model as new data that it had never encountered 

before, therefore imitating real world conditions. The result was 

an accuracy rating of approximately 92% or 232 correctly 

classified instances out of 253. 

 

TABLE IV VALIDATION TEST RESULTS 

Correctly Classified 

Instances 

232 / 253 (91.6996%) 

Incorrectly Classified 

Instances 

21 / 253 (8.3004%) 

Average True Positive Rate 0.917 

Average False Positive Rate 0.113 

Average Precision 0.917 

Average Recall 0.917 

Average F-Measure 0.916 



Table 5 shows the confusion matrix for the validation test. This 

provides details on the correctly and incorrectly classified 

instances and how they are distributed as true positive and 

negative and false positive and negative. The number of false 

positives for the validation test was seven and the number of 

false negatives was 14. 

 

TABLE V CONFUSION MATRIX FOR VALIDATION TEST 

Classified as  VPN Normal 

VPN 78 14 

Normal 7 154 

 

 

VI. SUMMARY 

In this paper we have successfully demonstrated the 

effectiveness of using a multi-layered perceptron neural 

network model trained using TCP flow-based features to 

classify network traffic as either originating from a VPN or 

not. The flow-based features discovered using Pearson’s 

Correlation Coefficient model can be said to accurately 

distinguish between VPN and non-VPN traffic as shown by 

the resulting accuracies of 92% and 93%. Low false positive 

rates also make this an attractive approach for law 

enforcement uses. As future work we plan to investigate the 

usefulness of this framework for other applications and 

investigate other machine learning algorithms. 

REFERENCES 

 

[1] J. T. Harmening, “Virtual Private Networks,” in 

Computer and Information Security Handbook, 

Elsevier, 2017, pp. 843–856. 

[2] S. Geetha and A. V. Phamila, Combating Security 

Breaches and Criminal Activity in the Digital Sphere. 

2016. 

[3] A. Peterson, “The Sony Pictures hack, explained.,” 

Washington Post, 2014. 

[4] T. Hunt, “Observations and thoughts on the LinkedIn 

data breach,” troyhunt.com, 2016. [Online]. Available: 

https://www.troyhunt.com/observations-and-thoughts-

on-the-linkedin-data-breach/. [Accessed: 06-Dec-

2017]. 

[5] V. Paxson, S. Floyd, V. Paxson, and S. Floyd, “Wide-

area traffic,” in Proceedings of the conference on 

Communications architectures, protocols and 

applications - SIGCOMM ’94, 1994, vol. 24, no. 4, pp. 

257–268. 

[6] V. Paxson, “Empirically Derived Analytic Models of 

Wide-Area TCP Connections,” IEEE/ACM Trans. 

Netw., vol. 2, no. 4, pp. 316–336, 1994. 

[7] G. Gómez Sena and P. Belzarena, “Early Traffic 

Classification using Support Vector Machines,” Proc. 

LANC, p. 60, 2009. 

[8] W. Li, M. Canini, A. W. Moore, and R. Bolla, 

“Efficient application identification and the temporal 

and spatial stability of classification schema,” Comput. 

Networks, vol. 53, no. 6, pp. 790–809, Apr. 2009. 

[9] S. H. Yeganeh, M. Eftekhar, Y. Ganjali, R. Keralapura, 

and A. Nucci, “CUTE: Traffic Classification Using 

TErms,” in 2012 21st International Conference on 

Computer Communications and Networks (ICCCN), 

2012, pp. 1–9. 

[10] G. Aceto, A. Dainotti, W. de Donato, and A. Pescape, 

“PortLoad: Taking the Best of Two Worlds in Traffic 

Classification,” in 2010 INFOCOM IEEE Conference 

on Computer Communications Workshops, 2010, pp. 

1–5. 

[11] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. 

A. Ghorbani, “Characterization of Encrypted and VPN 

Traffic using Time-related Features,” in Proceedings of 

the 2nd International Conference on Information 

Systems Security and Privacy, 2016, pp. 407–414. 

[12] D. Wang, L. Zhang, Zhenlong Yuan, Y. Xue, and Y. 

Dong, “Characterizing Application Behaviors for 

classifying P2P traffic,” in 2014 International 

Conference on Computing, Networking and 

Communications (ICNC), 2014, pp. 21–25. 

[13] M. Stevanovic and J. M. Pedersen, “An efficient flow-

based botnet detection using supervised machine 

learning,” in 2014 International Conference on 

Computing, Networking and Communications (ICNC), 

2014, pp. 797–801. 

[14] M. S. I. Mamun, A. A. Ghorbani, and N. Stakhanova, 

“An Entropy Based Encrypted Traffic Classifier,” in 

Information and Communications Security, 2016, pp. 

282–294. 

[15] J. Sherry et al., “BlindBox,” ACM SIGCOMM Comput. 

Commun. Rev., vol. 45, no. 5, pp. 213–226, Aug. 2015. 

[16] V. Aghaei-Foroushani and A. N. Zincir-Heywood, “A 

Proxy Identifier Based on Patterns in Traffic Flows,” in 

2015 IEEE 16th International Symposium on High 

Assurance Systems Engineering, 2015, pp. 118–125. 

[17] C. Liu, R. W. White, and S. Dumais, “Understanding 

web browsing behaviors through Weibull analysis of 

dwell time,” in Proceeding of the 33rd international 

ACM SIGIR conference on Research and development 

in information retrieval - SIGIR ’10, 2010, p. 379. 

[18] F. Haddadi and A. N. Zincir-Heywood, “Benchmarking 

the Effect of Flow Exporters and Protocol Filters on 

Botnet Traffic Classification,” IEEE Syst. J., vol. 10, 



no. 4, pp. 1390–1401, Dec. 2016. 

[19] S. Stibler, N. Brownlee, and G. Ruth, “RTFM: New 

Attributes for Traffic Flow Measurement.” pp. 1–18, 

1999. 

[20] D. Arndt, “NetMate-flowcalc « Daniel Arndt,” 2011. 

[Online]. Available: 

https://dan.arndt.ca/projects/netmate-flowcalc/. 

[Accessed: 04-Oct-2017]. 

[21] E. Frank, M. A. Hall, and I. H. Witten, “The WEKA 

Workbench Online Appendix for ‘Data Mining: 

Practical Machine Learning Tools and Techniques’ 

Morgan Kaufmann, Fourth Edition, 2016,” Morgan 

Kaufmann, Fourth Ed., 2016. 

 


