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Abstract: The ability to operate effectively on electricity spot markets 

relies on the capability to devise appropriate bidding strategies. These in 

turn can benefit from the inclusion of a reliable forecast of short term 

system marginal prices (SMPs). In a market with an increasing 

percentage of renewable generators, reliable forecasts must necessarily 

consider additional factors such as meteorological forecasts, forecasted 

demand and constraints imposed by network topology. Traditional time 

series forecasting algorithms (e.g. based on AutoRegressive Integrated 

Moving Average models) can perform reasonably well in this context but 

rely on assumptions being made on behavior over different temporal 

windows to yield consistent results. Research studies have demonstrated 

that an adaptive or self-adaptive approach to forecasting would appear 

more suited to the task of predicting energy demands in territory such as 

Ireland. Implementing an in-house self-adaptive model should yield good 

results in the dynamic uncertain Irish energy market. We have identified 

the features that such a model demands and outline it here. 

 

I. INTRODUCTION 
 

Electricity markets are different from other markets as electricity 

generation cannot be easily stored in large amounts and to avoid 

blackouts, the generation of electricity must be balanced with 

customer demand for it on a second-by-second basis. Customers 

tend to rely on electricity for day-to-day living and cannot replace 

it easily so when electricity prices increase, customer demand 

generally does not reduce significantly in the short-term. As 

electricity generation and customer demand must be matched 

perfectly second-by-second, and because generation cannot be 

stored to a large extent, cost bids from generators must be 

balanced with demand estimates in advance of real-time. The 

increasing percentage of electricity generated through renewable 

sources tends to invalidate the assumption of correlation between 

electricity spot prices and the price of the mix of commodities 

utilized to supply generators (e.g. gas, coal, oil – depending on 

the generating asset composition on the specific grid). The 
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variable nature of production of renewable energy sources also 

increases the volatility of system marginal prices (SMPs) on 

markets based on a mandatory central pool model. European 

countries have undertaken substantial investments to boost the 

amount of energy produced through renewable generation. 

Ireland in particular is aiming at 40% of its power needs being 

met by renewable sources by 2020. In this environment, we can 

expect the wholesale, fine granularity (e.g. half hourly) wholesale 

price of electricity to become more volatile over time. Previous 

work (Sharma et al., 2012) have shown that an adaptive or self-

adaptive approach to forecasting would appear more suited to the 

task of predicting energy demands in territory such as Ireland.  

 

The Single Electricity Market (SEM) is the wholesale electricity 

market for the island of Ireland, regulated jointly by the CER and 

its counterpart in Belfast, the Utility Regulator. The Commission 

for Energy Regulation (CER) is the independent body responsible 

for regulating the natural gas and electricity markets in Ireland. 

By combining what were two separate jurisdictional electricity 

markets, the SEM became one of the first of its kind in Europe 

when it went live on 1st November 2007 (CER, 2011). The SEM 

is designed to provide for the least cost source of electricity 

generation to meet customer demand at any one time across the 

island, while also maximising long-term sustainability and 

reliability.  The SEM is operated by SEMO, the Single Electricity 

Market Operator, a joint-venture between EirGrid and SONI, the 

transmission system operators in Ireland and Northern Ireland 

respectively. SEMO1 is responsible for administering the market, 

including paying generators for their electricity generated and 

invoicing suppliers for the electricity they have bought (CER, 

2011). SEM consists of a centralised and mandatory all-island 

wholesale pool (or spot) market, through which generators and 

suppliers trade electricity. Generators bid into this pool their own 

short-run costs for each half hour of the following day, which is 



mostly their fuel-related operating costs. Based on this set of 

generator costs and customer demand for electricity, the System 

Marginal Price (SMP) for each half-hour trading period is 

determined by SEMO, using a stack of the cheapest all-island 

generator cost bids necessary to meet all-island demand. It is these 

more efficient generators which are generally run to meet demand 

in the half hour in what is known as the “Market Schedule”. More 

expensive or inefficient generators are “out of merit” and hence 

they are not run and are not paid SMP, keeping customers’ bills 

down. The SMP for each half hour is paid to all generators that 

are needed to meet demand. Suppliers, who sell electricity direct 

to the final consumer, buy their electricity from the pool at this 

common price. Overall the SEM facilitates the running of the 

cheapest possible generators, determined by the stack of 

generation cost bids, to meet customer demand across the island. 

This mandatory centralised pool model in SEM, in which all key 

generators and suppliers must participate, differs from most other 

European markets in which most trade takes place bilaterally 

between generators and suppliers. In these bilateral markets only 

a residual amount of electricity is traded in an exchange, primarily 

for balancing purposes. In contrast all key players must trade in 

SEM, so there is more transparency associated with SEM prices 

and market outcomes (CER, 2011).  This paper outlines several 

forecasting algorithms to predict short-term (72 hours ahead) 

wholesale prices on the Irish Single Electricity Market so that 

market participants can make more informed trading decisions. 

This paper is organised as follows: Section II introduces Artificial 

Neural Networks & Short-term Load Forecasting, section III 

presents the short-term forecasting model and section IV provides 

a conclusion. 

 

 

II. ARTIFICIAL NEURAL NETWORKS & SHORT-TERM 

LOAD FORECASTING 

 

In machine learning and cognitive science, artificial neural 

networks (ANNs) are a family of models inspired by biological 

neural networks (the central nervous systems of animals, in 

particular the brain) and are used to estimate or approximate 

functions that can depend on a large number of inputs and are 

generally unknown. (McCulloch & Pitts, 1943). Like other 

machine learning methods – systems that learn from data – neural 

networks have been used to solve a wide variety of tasks that are 

hard to solve using ordinary rule-based programming, including 

computer vision and speech recognition (Forouzanfar, 2010). For 

short-term load forecasting, the Back Propagation Network (BP) 

network is the most widely used one. Due to its ability to 

approximate any continuous nonlinear function, the BP network 

has extraordinary mapping (forecasting) abilities. The BP 

network is a kind of multilayer feed forward network, and the 

transfer function within the network is usually a nonlinear 

function such as the Sigmoid function. The typical BP network 

structure for short-term load forecasting is a three-layer network, 

with the nonlinear Sigmoid function as the transfer function 

(Schmidhuber, 2015).  Fully connected BP networks need more 

training time and are not adaptive enough to temperature changes 

therefore some have moved to using non-fully connected BP 

models (Graves et al., 2009). Although a fully connected ANN is 

able to capture the load characteristics, a non-fully connected 

ANN is more adaptive to respond to temperature changes. Results 

also show that the forecasting accuracy is significantly improved 

for abrupt temperature changing days. There is also merit in 

combining several sub-ANNs together to give better forecasting 

results such as using recurrent high order neural networks 

(RHONN). Due to its dynamic nature, the RHONN forecasting 

model is able to adapt quickly to changing conditions such as 

important load variations or changes of the daily load pattern 

(Graves et al., 2009). A back propagation network is a type of 

array which can realize nonlinear mapping from the inputs to the 

outputs. Therefore, the selection of input variables of a load 

forecasting network is very important. In general, there are two 

selection methods. One is based on experience and the other is 

based on statistical analysis such as the ARIMA and correlation 

analysis. 

 

For instance, we can denote the load at hour k as l(k) so a typical 

selection of inputs based on operation experience will be l(k-1), 

l(k-24), t(k-1), where t(k) is the temperature corresponding to the 

load l(k). Unlike those methods which are based on experience, 

we can apply auto-correlation analysis on the historical load data 

to determine the input variables. Auto-correlation analysis should 

show that correlation of peaks occurs at the multiples of 24 hour 

lags. This indicates that the loads at the same hours have very 

strong correlation with each other. Therefore, they can be chosen 

as input variables. In addition to using conventional information 

such as historical loads and temperature as input variables, wind-

speed, sky-cover can also be used. Potential input variables could 

be historical loads, historical and future temperatures, hour of day 

index, day of week index, wind-speed, sky-cover, rainfall and wet 

or dry days.  There are no hard fast rules to be followed to 

determine input variables. This largely depends on engineering 

judgment and experience. Previous research (Rui & El-Keib, 

1995) has found that for a normal climate area, historical loads, 

historical & future temperatures, hour of day and day of week 

index are sufficient to give acceptable forecasting results. 

However, for an extreme weather-conditioned area the other input 

variables classes were recommended, because of the highly 

nonlinear relationship between the loads and the weather 

conditions. 

 

 

III. A SHORT TERM ENERGY FORECASTING MODEL 

 

Artificial Neural Networks (ANNs) can only perform what they 

were trained to do. Therefore to achieve short term load 

forecasting, the selection of the training data is a crucial one. The 



criteria for selecting the training set is that the characteristics of 

all the training pairs in the training set must be similar to those of 

the day to be forecasted. Choosing as many training pairs as 

possible is not the correct approach for a number of reasons. On 

reason is load periodicity. For instance, each day of the week has 

different patterns. Therefore, using Sundays' load data to train the 

network which is to be used to forecast Mondays' loads would 

lead to wrong results. Also, as loads possess different trends in 

different periods, recent data is more useful than old data. 

Therefore, a very large training set which includes old data is less 

useful to track the most recent trends. Therefore to obtain good 

forecasting results, day type information must be taken into 

account. We can achieve this by constructing different ANNs for 

each day type, and feeding each ANN the corresponding day type 

training sets ( Lee, 1992). Another way is to use only one ANN 

but contain the day type information in the input variables 

(Srinivasan, 1994). The two methods have their advantages and 

disadvantages. The former uses a number of relatively small size 

networks, while the latter has only one network of a relatively 

large size. The day type classification is system dependent e.g. the 

load on Monday may be similar to that on Tuesdays but not 

always. Therefore one option is to classify historical loads into 

classes such as Monday, Tuesday-Thursday, Friday, Saturday, 

and Sunday/Public holiday.   The Back Propagation algorithm is 

widely used in short-term load forecasting and has some good 

features such as, its ability to easily accommodate weather 

variables, and its implicit expressions relating inputs and outputs 

but it is also a time consuming training process and its 

convergence to local minima (Ciresan et al., 2012). The 

determination of the optimal number of hidden neurons is a 

crucial issue. If it is too small, the network cannot possess 

sufficient information, and therefore yields inaccurate forecasting 

results. On the other hand, if it is too large, the training process 

will be very long (Balabin et al., 2009).  

 

Other important factors are to determine how big the prediction 

window should be. For instance, it could possibly be cold in one 

month so is this valid 12 months later. The forecast horizon is day 

+ 1 - and for remainder of day. This is for the next available 

market. The model may also provide predictions for 48/72 hours. 

This will lead of course to dimensioned results but we associate a 

corresponding error value. Not all electricity markets follow the 

same slots so in practice we aim to weather forecast, model 

network topology and more. Some of the main factors for 

forecasting are demand forecast, estimated power production 

capability and available interconnection capacity. Outliers 

include weather events, solar eclipses so we must also be careful 

not to factor into our model. The initial stage involves 

determining the input variables from the demand, power 

production and price prediction data we download from SEMO2.  

The notation used throughout the paper is provided in Figure 1. 
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Notation Meaning 

D Report date, such as 11/25/16 

D+2 The delivery date of predicted SMP, such as 

11/27/16 (7:00am – 6:30am+1) 

SMPD+2hh The output (7:00am – 6:30am+1) 

DemandD+2hh The Demand corresponding to the output 

(7:00am – 6:30am+1) 

Power_IrelandD+2hh The power summation of Solar power and 

wind power production in the whole Ireland 

(7:00am – 6:30am+1) 

Power_UKD+2hh The power summation of Solar power and 

wind power production in the whole UK 

mainland (7:00am – 6:30am+1) 

SMPD+1hh The SMP tomorrow (7:00am – 6:30am+1) 

SMPD-5hh The week-ahead SMP of the predicted date 

SMPD-12hh The 2-week ahead SMP of the predicted date 

SMPD+1hh-1 The SMP of previous half hour 

SMPD+1hh-2 The SMP of previous hour 
Figure 1: Nomenclature used 

Feature selection is the process of selecting a subset of relevant 

features for use in model construction. Feature Selection is placed 

into two main categories, wrapper methods and filter method. 

Wrapper methods evaluate multiple features using procedures 

that add and/or remove predictors to find the optimal combination 

that maximizes model performance.  We use Recursive Feature 

Elimination with Backwards Selection in our feature selection 

model and use Random Forecast Method as the forecasting 

algorithm. An obvious concern is that too few variables are 

selected or that the selected set of input variables is not 

sufficiently informative. Half-hourly SMP itself can be divided 

between the shadow price and uplift price. The SMP follows 

customer demand, as a more expensive stack of generators is 

needed to meet demand when it is high, whereas at low demand 

times demand can be met with cheaper generators. Approximately 

80% of the island’s electricity generation comes from imported 

fossil fuels, with most this in the form of gas-fired generation 

plants, though the amount of renewable generation (especially 

wind) is increasing. The start date of training date was 20-11-2016 

and the last date of training date was 20-1-2017. The 

preprocessing included normalization, separation of input and 

output, removal of the column with near zero variance and 

removal of the column with high correlation. The inputs were 

["Delivery_Date", "Delivery_Hour", "Delivery_Interval", 

"SMP_D_Euro", "SMP_D_Minus_6_Euro", 

"SMP_D_Minus_13_Euro", "LoadDemand", 

"Power_Production_Ireland", "Output_SMP_Euro"].  The 

resampling method is cv (cross validation), the number of divided 

blocks is 9. The WM method tuning Grid of num.label is 5,7,9,11. 
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D 

Euro 

SMP 

D-1 

Euro 

SMP 

D-2 

Euro 

SMP 

D-3 

Euro 

SMP 

D-4 

Euro 

SMP 

D-5 

Euro 

SMP 

D-6 

Euro 

SMP 

D-13 

Euro 

SMP 

HH-1 

Euro 

SMP 

HH-2 

Euro 

Load 

Demand 

Power 

Prod 

Ireland 

Power 

Prod 

UK 

Output 

SMP 

Euro 

34.11 56.12 35.58 35.45 35.45 33.85 36.02 37.27 38.56 40.22 3332.99 2632 6432 26.82 

34.96 53.31 34.96 36.22 35.67 33.85 39.60 37.22 34.11 38.56 3617.22 2632 6432 33.29 

37.35 52.05 35.93 36.22 37.65 33.93 48.55 40.12 34.96 34.11 4044.04 2622 6301 33.37 

46.83 48.49 36.95 45.34 49.53 41.99 58.69 48.23 37.35 34.96 4598.26 2622 6301 44.12 

53.00 45.41 39.11 58.81 54.65 50.07 49.99 52.00 46.83 37.35 4794.32 2588 6213 36.26 

53.00 42.83 45.16 59.50 54.65 50.07 48.91 53.24 53.00 46.83 4848.44 2588 6213 36.26 
 

Figure 2: Training data set 

 

Wang and Mendel Fuzzy Inference System Wang and Mendel Fuzzy Rules  
Num labels RMSE RSquared Num Labels RMSE RSquared 

5 0.08085976391   0.6164148104 5 0.08243602951   0.4944017323 

7 0.08348111341   0.5985532171 7 0.08034681858   0.5329743329 

9 0.08282707433   0.6045367775 9 0.06520352477   0.5802984609 

11 0.08351732060   0.6031938904 11 0.06158859213   0.6117265554 

13 0.08297830444   0.6087738091 13 0.06288671368   0.5995754154 

15 0.08141637713   0.6133514129 15 0.06096258818   0.6064996381 
 

Figure 3: WM Methods 

 

Neural Network Neural Network with Feature Extraction 

Size Decay RMSE RSquared Size Decay RMSE RSquared 
7 0.1 0.05270524894   0.6929778933 7 0.1 0.05089153350   0.7208933843 

7 0.2 0.05347311140   0.6888295076 7 0.2 0.05167995561   0.7140019128 

7 0.3 0.05453963414   0.6838997251 7 0.3 0.05250239843   0.7054384820 

7 0.4 0.05573614668   0.6818432270 7 0.4 0.05310788152   0.6991367997 

7 0.5 0.05697179184   0.6792381810 7 0.5 0.05352101625   0.6939291592 

9 0.1 0.05271452634   0.6927232380 9 0.1 0.05119465918   0.7175199801 

9 0.2 0.05344611869   0.6889050040 9 0.2 0.05164156293   0.7146256683 

9 0.3 0.05437667388   0.6856260338 9 0.3 0.05240655299   0.7054188336 

9 0.4 0.05541222294 0.6832885298 9 0.4 0.05300188523   0.6998314790 

9 0.5 0.05666255577   0.6808368771 9 0.5 0.05348630999   0.6950229190 

11 0.1 0.05270600467   0.6927112655 11 0.1 0.05163404149   0.7143136221 

11 0.2 0.05338348384   0.6890494993 11 0.2 0.05159720638   0.7150221137 

11 0.3 0.05428912207   0.6860951090 11 0.3 0.05238156971   0.7062859365 

11 0.4 0.05526530966   0.6838981978 11 0.4 0.05307634772   0.6988441224 

11 0.5 0.05649060682   0.6814349601 11 0.5 0.05339202900   0.6959431786 

13 0.1 0.05267401075   0.6930661064 13 0.1 0.05111346554   0.7186556348 

13 0.2 0.05332159021   0.6898724679 13 0.2 0.05154455074   0.7152574599 

13 0.3 0.05414921928   0.6870251648 13 0.3 0.05250977982   0.7055231884 

13 0.4 0.05518955461   0.6841764190 13 0.4 0.05300783963   0.6996952093 

13 0.5 0.05629418211   0.6822628708 13 0.5 0.05341948835   0.6956999722 

15 0.1 0.05265961271   0.6931825427 15 0.1 0.05098003722   0.7217784390 

15 0.2 0.05330512595   0.6899778133 15 0.2 0.05137956282   0.7174058104 

15 0.3 0.05411134212   0.6871732710 15 0.3 0.05240654610   0.7056927565 

15 0.4 0.05508926487   0.6847492765 15 0.4 0.05293500471   0.7004590233 

15 0.5 0.05619344396   0.6827220878 15 0.5 0.05324102449   0.6970127299 
 

Figure 4: Neural Network Methods 

A. Rule-Based Models 

 

 



The Wang–Mendel (WM) method (Wang & Mendel, 1992) was 

one of the first methods to design fuzzy systems from data 

(Brown & Harris, 1994). Others known as “neuro-fuzzy” 

methods were (Lin & Lee, 1991). The method has been applied 

to a variety of problems and is one of the benchmark methods in 

the field (Cox, 1999). In the WM Fuzzy Inference model, RMSE 

was used to select the optimal model using the smallest value 

which was 0.08085976391 (5). In the WM Fuzzy Rules model, 

the final values used for the model were num.labels = 15 and 

type.mf = GAUSSIAN.  In the Subtractive Clustering and Fuzzy 

c-Means RMSE was used to select the optimal which was r.a = 

0.3, eps.high = 0.3 and eps.low = 0.2 as shown in Figure 5. 

 

r.a, 

eps.high/low 

RMSE Rsquared 

0.3,0.3,0.10 0.06477678   0.5755458 

0.3,0.3,0.15 0.06477678   0.5755458 

0.3,0.3,0.20 0.06477678   0.5755458 

0.3,0.5,0.10 0.06477678   0.5755458 

0.3,0.5,0.15 0.06477678   0.5755458 

0.3,0.5,0.20 0.06477678   0.5755458 

0.3,0.7,0.10 0.06477678   0.5755458 

0.3,0.7,0.15 0.06477678   0.5755458 

0.3,0.7,0.20 0.06477678   0.5755458 

0.5,0.3,0.10 0.06752837   0.5593372 

0.5,0.3,0.15 0.06752837   0.5593372 

0.5,0.3,0.20 0.06752837   0.5593372 

0.5,0.5,0.10 0.06752837   0.5593372 

0.5,0.5,0.15 0.06752837   0.5593372 

0.5,0.5,0.20 0.06752837   0.5593372 

0.5,0.7,0.10 0.06752837   0.5593372 

0.5,0.7,0.15 0.06752837   0.5593372 

0.5,0.7,0.20 0.06752837   0.5593372 

0.7,0.3,0.10 0.06858001   0.5591306 

0.7,0.3,0.15 0.06858001   0.5591306 

0.7,0.3,0.20 0.06858001   0.5591306 

0.7,0.5,0.10 0.06858001   0.5591306 

0.7,0.5,0.15 0.06858001   0.5591306 

0.7,0.5,0.20 0.06858001   0.5591306 

0.7,0.7,0.10 0.06858001   0.5591306 

0.7,0.7,0.15 0.06858001   0.5591306 

0.7,0.7,0.20 0.06858001   0.5591306 

Normalised Error 
Test 0.05450646 

Training 0.02600927 

Actual Error 
Test 16.124102 

Training 7.694062 
Figure 5: Subtractive Clustering and Fuzzy c-Means Rules 

 

 
Figure 6: Subtractive Clustering and Fuzzy c-Means Rules 

 

B. Neural Network Models 
Next we tried Neural Networks with 2916 samples, 13 predictors 

and no pre-processing. The resampling was Cross-Validated (9 

fold) with sample sizes: 2592, 2592, 2592, 2592, 2592, 2592. In 

the Neural Network model, RMSE was used to select the 

optimal model using the smallest value which was 15 and decay 

= 0.1 and in the Neural Network with feature extraction, the 

final values used for the model were size = 7 and decay = 0.1.  

The first experiment was the Bayesian Regularization for Feed-

Forward Neural Networks model. The input variables are: 

[SMP_D_Minus_13_Euro, SMP_D_Euro, LoadDemand, 

SMP_D_Minus_1_Euro]. RMSE was used to select the optimal 

model using the smallest value which was neurons = 11 as 

shown in Figure 7. 

 

Neurons RMSE Rsquared 
11 0.07401631   0.5261056 

13 0.09454580   0.4266669 

15 0.08705493   0.4360314 

Normalised Error 

Test 0.05517338 

Training 0.04931483 

Actual Error 

Test 16.32139 

Training 14.58831 

Figure 7: Bayesian Regularization for Feed-Forward Neural Networks 

 
Figure 8: Bayesian Regularization for Feed-Forward Neural Networks 



The next experiment was the multi-layer perceptron model. The 

input variables are: SMP_D_Minus_13_Euro, LoadDemand, 

SMP_D_Euro, SMP_D_Minus_1_Euro, SMP_D_Minus_ 

6_Euro, SMP_D_Minus_2_Euro, SMP_D_Minus_3_Euro, 

SMP_D_Minus_5_Euro, SMP_HH_Minus_1_Euro, SMP_ 

D_Minus_4_Euro, SMP_HH_Minus_2_Euro, Power_Prod_ 

IRL]. The best result was neurons = 15 as shown in Figure 9. 

 
Neurons RMSE Rsquared 

11 0.05250854   0.7048104 

13 0.05307737   0.7005197 

15 0.05249322   0.7026434 

Normalised Error 

Test 0.04292271 

Training 0.04648640 

Actual Error 

Test 12.69740 

Training 13.75161 
Figure 9: Multi-layer perceptron 

 

 
Figure 10: Multi-layer perceptron 

 

In the Neural Networks experiment, the input variables are: 

[LoadDemand, Power_Production_Ireland, SMP_D_Minus_ 

13_Euro, SMP_HH_Minus_2_Euro, SMP_D_Minus_2_Euro, 

Power_Production_UK, SMP_D_Minus_5_Euro, SMP_D_ 

Minus_3_Euro, SMP_D_Minus_4_Euro, SMP_D_Euro, SMP_ 

D_Minus_6_Euro]. RMSE was used to select the optimal model 

using the smallest value which was neurons = 11 and decay = 

0.02 as shown in Figure 11. 

 
size/decay RMSE Rsquared 

11 0.010 0.05248126    0.7161288 

11 0.015 0.05235626   0.7148340 

11 0.020 0.05235063   0.7133702 

13 0.010 0.05282604   0.7118659 

13 0.015 0.05235792   0.7148175 

13 0.020 0.05235315   0.7133737 

15 0.010 0.05283664   0.7116809 

15 0.015 0.05242537   0.7139332 

15 0.020 0.05236808   0.7133572 

Normalised Error 

Test 0.04594939 

Training 0.04620509 

Actual Error 

Test 13.59275 

Training 13.66839 
Figure 11: Neural Network 

 

 
Figure 12: Neural Network 

 

In the Neural Networks with Feature Extraction experiment, the 

input variables are: [SMP_D_Minus_13_Euro, LoadDemand, 

SMP_D_Euro, SMP_D_Minus_1_Euro, SMP_D_Minus_2 

Euro]. RMSE was used to select the optimal model using the 

smallest value which was size = 13 and decay = 0.02 as shown 

in Figure 13. 

 
size/decay RMSE Rsquared 

11 0.010 0.06011476   0.6211297 

11 0.015 0.05982740   0.6250083 

11 0.020 0.06159925   0.6027796 

13 0.010 0.06854780   0.5366326 

13 0.015 0.05902941   0.6339155 

13 0.020 0.05689748   0.6527683 

15 0.010 0.06493007   0.5633139 

15 0.015 0.06272061   0.5915866 

15 0.020 0.06343059   0.5956760 

Normalised Error 

Test 0.06434868 

Training 0.04389391 

Actual Error 

Test 19.03563 

Training 12.98470 

 
Figure 13: Neural Networks with Feature Extraction 

 



 
Figure 14: Neural Networks with Feature Extraction 

 

In the Radial Basis Function Network experiment, the input 

variables are: [SMP_D_Minus_13_Euro, LoadDemand, 

SMP_D_Euro, SMP_D_Minus_1_Euro, 

SMP_D_Minus_2_Euro, SMP_D_Minus_6_Euro, 

SMP_D_Minus_3_Euro, SMP_HH_Minus_1_Euro]. RMSE was 

used to select the optimal model using the smallest value which 

was size = 11as shown in Figure 15. 

 
Size RMSE Rsquared 

11 0.06419983   0.6427550 

13 0.08197198   0.6383784 

15  0.07501390   0.6455758 

Normalised Error 

Test 0.04858537 

Training 0.05931154 

Actual Error 

Test 14.37252 

Training 17.54554 
Figure 15: Radial Basis Function Network 

 

 
Figure 16: Radial Basis Function Network 

 

In the Multi-Layer Perceptron, with multiple layers experiment, 

the input variables are: [SMP_D_Minus_13_Euro, 

LoadDemand, SMP_D_Euro, SMP_D_Minus_1_Euro, 

SMP_D_Minus_2_Euro, SMP_D_Minus_6_Euro, 

SMP_D_Minus_3_Euro, SMP_D_Minus_5_Euro, 

SMP_HH_Minus_1_Euro, SMP_D_Minus_4_Euro, 

SMP_HH_Minus_2_Euro, Power_Production_Ireland, 

Power_Production_UK]. RMSE was used to select the optimal 

model using the smallest value which were layer1 = 13, layer2 = 

13 and layer3 = 13 as shown in Figure 17. 

 
Layer 1,2,3 RMSE Rsquared 

11,11,11 0.05234793   0.7152431 

11,11,13 0.05179760   0.7129437 

11,11,15 0.05226256   0.7113108 

11,13,11 0.05290105   0.7121994 

11,13,13 0.05223151   0.7125928 

11,13,15 0.05216129   0.7157355 

11,15,11 0.05263369   0.7146328 

11,15,13 0.05224950   0.7170724 

11,15,15 0.05196844   0.7155363 

13,11,11 0.05212525   0.7148120 

13,11,13 0.05213235   0.7119987 

13,11,15 0.05267301   0.7136223 

13,13,11 0.05222891   0.7140849 

13,13,13 0.05135011   0.7171306 

13,13,15 0.05378522   0.7171374 

13,15,11 0.05153877   0.7140732 

13,15,13 0.05178785   0.7136781 

13,15,15 0.05203611   0.7165408 

15,11,11 0.05686386   0.7133883 

15,11,13 0.05192465   0.7141276 

15,11,15 0.05257671   0.7138850 

15,13,11 0.05195074   0.7144070 

15,13,13 0.05283617   0.7131725 

15,13,15 0.05171448   0.7176357 

15,15,11 0.05223462   0.7176678 

15,15,13 0.05187319   0.7159089 

15,15,15 0.05162038   0.7169941 

Normalised Error 

Test 0.04469686 

Training 0.04738835 

Actual Error 

Test 13.22223 

Training 14.01842 
Figure 17: Multi-Layer Perceptron, with multiple layers 

 

 
Figure 18: Multi-Layer Perceptron, with multiple layers 

 

In the Wang and Mendel Fuzzy Rules experiment, the input 

variables are: [SMP_D_Minus_13_Euro, SMP_D_Euro, 

LoadDemand, SMP_D_Minus_1_Euro]. Tuning parameter 

'type.mf' was held constant at a value of GAUSSIAN. RMSE was 

used to select the optimal model using the smallest value which 



was num.labels = 15 and type.mf = GAUSSIAN as shown in 

Figure 19. 

 
Num labels RMSE Rsquared 

13 0.06502759   0.5887993 

15  0.06490675   0.5796969 

Normalised Error 

Test 0.05378375 

Training 0.02158287 

Actual Error 

Test 15.910308 

Training 6.384645 

 
Figure 19: Wang and Mendel Fuzzy Rules 

 

 
 

A comparison between the models is shown in Figure 20. 

 

 
Figure 20: Comparison of Models 

 

 

IV.  CONCLUSION 
 

Short-term load forecast is an essential part of electric power 

system planning and operation. This paper presents a series of 

rules based and neural network based approaches for short-term 

load forecasting that uses the correlated weather data for training, 

validating and testing of a neural network. Time series prediction 

is one of the most important prediction that collect past 

observations of a variable and analyze it to obtain the underlying 

relationships between historical observations but time series has 

properties such as nonlinearity, chaotic, non-stationary and cyclic 

which cause problems. An adaptive neural network based fuzzy 

inference system (ANFIS) is where the learning processes are 

performed by interleaving the optimization of the antecedent and 

conclusion parts parameters.  We believe ANNs permit modelling 

of complex and nonlinear relationships through training with the 

use of historical data and can therefore be used in models based 

on weather information without the need for assumptions for any 

functional relationship between load and weather variables 
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