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Streaming media on the Internet can still be unreliable. Services such as audio-on-demand drastically increase 
the loads on networks therefore new, robust and highly efficient coding algorithms are necessary. One method 
overlooked to date, which can work alongside existing audio compression schemes, is that which takes account 
of the semantics and natural repetition of music. Similarity detection within polyphonic audio has presented 
problematic challenges within the field of Music Information Retrieval. One approach to deal with bursty errors 
is to use self-similarity to replace missing segments. Many existing systems exist based on packet loss and 
replacement on a network level but none attempt repairs of large dropouts of 5 seconds or more. Music exhibits 
standard structures that can be used as a forward error correction mechanism. Forward Error Correction (FEC) 
is an area that addresses the issue of packet loss with the onus of repair placed as much as possible on the 
listener’s device. We have developed a server-client based framework (SoFI) for automatic detection and 
replacement of large packet losses on wireless networks when receiving time-dependent streamed audio. SoFI 
swaps audio presented to the listener between a live stream and previous sections of the audio stored locally, 
when dropouts occur, has been implemented. Objective and subjective evaluations of SoFI where subjects were 
presented with other simulated approaches to audio repair together with simulations of replacements including 
varying lengths of time in the repair give positive results. 

Categories and Subject Descriptors: E.4 [Coding and Information Theory]: Error control codes; Data 

compaction and compression 

General Terms: Streaming Audio 

Additional Key Words and Phrases: Streaming media, Forward error correction, audio repair, Data 

compaction and compression 

1.  INTRODUCTION 

Streaming media across networks has been a focus for much research in the area of 

lossy/lossless file compression and network communications. Traditional 

communications techniques for error mitigation perform poorly and in a bandwidth-

inefficient manner in the presence of such large-scale defects in a digital audio 

stream. There are some techniques currently implemented to overcome the problems 

encountered. The increase in bandwidth across networks should help to alleviate the 

congestion problem. However, the development of audio compression including the 

more popular formats such as Microsoft’s Windows Media Audio WMA and the MPEG 

group’s mp3 compression schemes have peaked and yet end users want higher quality 

through the use of lossless compression formats on more unstable network topologies. 

When receiving streaming media over a low bandwidth wireless connection, users 
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can experience not only packet loss but also extended service interruptions. These 

dropouts can last for as long as 15 to 20 seconds. During this time no packets are 

received and, if not addressed, these dropped packets cause unacceptable 

interruptions in the audio stream. A long dropout of this kind may be overcome by 

ensuring that the buffer at the client is large enough. However, when using fixed bit-

rate technologies such as Windows Media Player, a simple packet resend request is 

the sole method of audio stream repair implemented. A novel solution that can 

complement existing techniques takes account of the semantics and natural 

repetition of music. Through the use of self-similarity meta-data, missing or damaged 

audio segments can be seamlessly replaced with similar undamaged segments that 

have already been successfully received.   

We propose a technology to generate relevant self-similarity meta-data for arbitrary 

audio material and to utilise this meta-data within a wireless audio receiver to 

provide sophisticated and real-time correction of large-scale errors.   The primary 

objectives are to match the current section of a song being received with previous 

sections whilst identifying incomplete sections and determining replacements based 

on previously received portions of the song.  This technology is unique in its approach 

to Forward Error Correction (FEC) technology that is used to ’repair’ a bursty dropout 

when listening to time-dependent media on a wireless network. Ultimately, using 

self-similarity analysis on a music file, we can ’automatically’ repair the dropout with 

a similar portion of the music already received thereby minimising a listeners 

discomfort.  The framework is built on pattern matching techniques which replaces 

missing sections of audio streamed across a bursty wireless network. The system 

utilises a Forward Error Correction (FEC) approach of audio repair on the client side 

without the need for a resend request building on an MPEG–7 feature extraction as 

a method of data reduction prior to similarity analysis.  k-means clustering for 

similarity identification of different sections within an audio file is used to implement 

string matching techniques which identify similarity between large sections of the 

clustered audio analysis. This identifies incomplete sections and determines 

replacements based on previously received portions of a song based on self-similarity 

analysis. Such a system has mass market appeal in various sectors. These sectors 

include Broadcast Digital Audio, Online Streaming Music Sites and Wireless Home 

Streaming Media Servers. Other immediate market areas include encompassing the 

similarity encoding process onto CDs for use with high-end Hi-Fi systems that 

operate on a wireless basis. A facility to provide a library of similarity encoded 

metadata is also possible based on the principle that a song needs to be analysed once 

and be broadcast an infinite number of times with the similarity data encoded. 

Ultimately, our method for streaming music over bandwidth constrained networks 

uses a technique which can work alongside existing audio compression schemes, by 

taking account of the syntax of the music. Songs, in general exhibit standard 

structures that can be used as a forward error correction mechanism. Forward Error 

Correction (FEC) is an area that addresses the issue of packet loss with the onus of 

repair placed as much as possible on the listener’s device. This paper outlines a 

system called SoFI (Song Form Intelligence) that determines packet loss and uses 

previously received portions of the song to predict what possible match already 

received exists. In turn, this is used in place of the missing packet(s) before the buffer 

is empty by applying and improving state-of-the-art theories and techniques in 

pattern matching with a syntactic, semantic and cognitive approach. 

 



 

2.    MUSIC STRUCTURE 

To define the structure of music is to say that music can be represented in a variety 

of formats depending on the needs of the user. The structure of music is a series of 

work that has yet to agree on a definition of the term structure (Wiggins, 1998; Salzer, 

1962). Different representations for music enable different but salient information to 

be displayed and stored, for example, the current structure of the well known music 

score has only been used since the mid 17th century. Music notation is one of 

continual evolution, and the 20th century is no exception. As composers have found 

new means of expression, they have developed new means of writing them down. For 

Example, methods of indicating microtones were found in early 20th century work, 

and symbols borrowed from mathematics have been used to denote complex rhythmic 

relationships. There have even been attempts, particularly in the first half of the 20th 

century to invent completely new systems such as Klavarscribo (Walker, 1997), but 

these have not been adopted as a notational standard by many. Syntax can be defined 

as a set of principles governing the combination of discrete structural elements into 

sequences (Jackendoff, 2002). Ockelford (1991) investigates finding a common ground 

within the varying musical structure representations based on repetition where the 

conclusion leads to creating yet another structure model with music being 

represented by a system of variables defined as perspects. This concludes with the 

common ground assumption that one perspect is deemed to exist in imitation of 

another by determining a zygonic theory of music-structural cognition. Since around 

the beginning of the 17th century, music notation has been defined in a standardised 

format in the style of music typography called plate engraving. This style of 

representation is ideal for musicians and composers, but when using a computer to 

read/interpret the notation difficulties arise. This is compounded by the myriad of 

computer programs for music notation, making sharing music between them difficult. 

Different programs use different representation styles: graphical, symbolic, 

numerical, etc. The reason for this is based on the particular task that the software 

has to perform, but because of this no one program can do everything equally well. 

Music information retrieval is complex: the queries are often “fuzzy” (query by 

humming or singing), and the data relationships are complicated. Queries that work 

well with one format are unsuitable for another. Until recently the only music 

interchange format commonly supported was MIDI. MIDI is an ideal format for 

performance applications like sequencers, but it is not as suitable for other 

applications such as music notation. MIDI does not know the difference between an 

F-sharp and a G-flat as well as many other aspects of music notation. Notation 

Interchange File Format (NIFF) and Standard Music Description Language (SMDL) 

have attempted to solve the interchange problem but they still have their limitations 

depending on the specific needs of users. NIFF is used to interchange music between 

scanning and notation applications, whereas SMDL was an attempt to create a formal 

specification for music, but as yet it has limited implementation mainly due to its 

complexity (Good et al, 2001). 

Recordare is a manufacturer and retailer of digital sheet music software that has 

developed the MusicXML format to create an Internet based method of sharing 

musical scores, with the aim to provide the same role for interactive sheet music that 

Mp3 files serve for recorded music. By using an XML style layout, Recordare has 

developed a standardised notation for the representation of music in a format that 

can be used by almost any application. Scanning and reading applications can import 



the content and present it in a graphical format with precise representation and other 

systems that previously relied on MIDI files can now import a more accurate 

conversion of the music. It should be pointed out that MusicXML has been developed 

with the need for a standardised representation and due to this it is a verbose 

representation where size is of less importance in relation to being application 

independent.  

Extraction and classification of audio using semantics is a popular approach to music 

representation/interpretation (Herrera et al, 2004; Slaney et al, 2002). SAR 

(Semantic-Audio Retrieval) creates a connection between semantic space and acoustic 

space using cluster abstraction for higher level representation similar to the MPEG–

7 format which uses hierarchical semantics for its tagging elements of data with 

Descriptors. SIMAC (Semantic Interaction with MusicAudio Contents) (Semantic, 

2008) is a research group dedicated to providing meaningful descriptors of musical 

content to aid in describing music collections that are close to emulating the mind’s 

way of organising and understanding its contents. Often we can describe songs in 

terms such as having a VCVC form, or a VCBVC form. Not all songs however follow 

a verse, chorus and bridge pattern. A large percentage of songs these days however 

follow a type of song form which includes a chorus, so a verse, chorus, verse, chorus 

type of song is VCVC. There is also a common song form, which includes a bridge, so 

a typical form with a bridge might be VVCVCBC. Other less common forms may 

include a pre-chorus that is a lead-up to the chorus (labelled L); intros (labelled I) at 

the very beginning of a song and extras (labelled E) are the lead-outs or endings to a 

song (Jackson, 2008). There are many variations of these forms however, with some 

songs starting with the chorus while others have more than one bridge. Any 

individual artist may have all kinds of variations. Most songwriters don’t start 

writing by coming up with a song form first. It usually reveals itself as the song is 

being written. It is, however, a quick and easy language to use when discussing the 

process with other writers. 

 

 

 

 

 

 

 

 

Figure 1: Hierarchical breakdown of a song in western tonal format 

The method of applying the hierarchical approach to audio in the context of its 

structure to describe the different portions of the audio is shown in Figure 1 , where 

an audio file has a root node of ’song’ which is then broken down into sections where 

the introduction, verse, and chorus are identified. Each section can then be broken 



into smaller sections again using the natural refrain of songs in Western Tonal 

Format. To provide a cognitive representation a piece of music can be defined using 

a form of semantic representation. Experience is not only related to the richness of 

perception, it also has a role in the construction of knowledge with meaning being 

characterised in terms of the experience: of the person becoming conscious of the 

music. As such, it is a basic claim of cognitive semantics (Jackendoff, 1987; Lakoff, 

1988) that meaning is an account of reality by people. The perception of music has 

been a popular area of cognitive research, with the human mind’s methods for 

interpretation of musical structure and patterns being a key area. Lerdahl and 

Jackendoff (1983) conducted some of their earlier work to provide investigations into 

the mind’s cognitive approach to grouping and reduction within music. They showed 

that complex musical structures were reduced to more abstract representations in 

the human mind: ”Reduction Hypothesis: The listener attempts to organise all the 

pitch-events of a piece into a single coherent structure, such that they are heard in a 

hierarchy of relative importance” (Lerdahl and Jackendoff, 1983). 

One of the more challenging areas of automatic transcription of polyphonic music is 

the estimation of a song’s fundamental frequency. Primarily this is due to the nature 

of music with a mixture of various musical instruments that have diverse spectral 

characteristics. When an object is forced into resonance vibrations at one of its 

natural frequencies, it vibrates in a manner such that a standing wave pattern is 

formed within the object. Each natural frequency which an instrument produces has 

its own standing wave pattern. These patterns are only created within the 

instrument at specific frequencies of vibration known as harmonic frequencies. At 

any frequency other than a harmonic frequency, the resulting disturbance of the 

medium is irregular and non-repeating. For musical instruments which vibrate in a 

regular and periodic fashion, the harmonic frequencies are related to each other by 

simple whole number ratios. It is at these frequencies that instruments sound 

pleasant. The lowest frequency produced by any particular instrument is known as 

its fundamental frequency (F0). Performing autocorrelation yields information about 

repeating events, such as identifying the fundamental frequency of a signal, which 

does not actually contain that frequency component but implies it with many 

harmonic frequencies. This is particularly common when multiple instruments are 

combined. Multiplication between the signal and a shifted version of itself results in 

a graph illustrating peaking patterns (Wallach, 2004). 

2.1    Feature Extraction and Audio 

The choice of features that can be extracted from audio depend greatly on the criteria 

of the analysis performed. These features can vary from pitch estimation to 

fingerprinting depending on the nature of the queries involved. MPEG–7 can be used 

as a feature extraction for a variety of extraction needs.  

MPEG–7 is an international standardised description of various types of multimedia 

information (Martinez et al, 2002). Whereas MPEG4 defines the layout and structure 

of a file and codecs, MPEG–7 is a more abstract model that incorporates a mark-up 

language to define description schemes and descriptors - the Description Definition 

Language (DDL). Using a hierarchy of classification allows different granularity in 

the descriptions. MPEG–7 as a descriptive tool can greatly enhance this area by 

adding additional metadata based on the content of the audio as well as standard 

keyword descriptors. It should be noted MPEG–7 standard only specifies the format 

for descriptions of content, and not the algorithms to utilise these descriptions. 

Developers have begun implementation of MPEG–7 only recently. The MPEG–7 



Library is a comprehensive list of over 800 description schemes and descriptors using 

classes in C++, which enables developers to use the functionality of MPEG–7 in their 

own applications. The Java MPEG–7 Audio Encoder is a complete software package 

for MPEG–7 analysis with the audio analysis results stored in XML format. The Java 

MPEG–7 Audio Encoder can be launched from the web using a Java Virtual Machine 

(JVM) or on a local machine as a command line application. It has been widely used 

as an analysis tool for similarity analysis and pattern recognition (Cho and Choi, 

2005). Through the combination of descriptors, description schemes, and a 

Description Definition Language (DDL), MPEG–7 can facilitate efficient searching 

and filtering of files. The two basic descriptors are the AudioWaveform (AW) and 

AudioPower (AP) presented as temporarily sampled scalar values. The 

AudioWaveform Descriptor gives a minimum/maximum value of the signal range 

within a specified temporal resolution. The AudioPower Descriptor provides a 

measure of the square of the waveform values and thereby providing a simplified 

representation of the signal showing peaks where the signal has a higher amplitude. 

A comparative study of some of the LLDs by Lukasiak et al (2003) shows that when 

facilitating comparison between audio segments, the AW performs better based on 

the principle that it has two measurements for each frame as opposed to a single 

value from the AP analysis. An example giving the first 18 s. of a guitar playing a 

rendition of the 12 Bar Blues is shown in Figure 2. When compared, the level of detail 

in the AW representation is higher regarding the content of the audio file.  

 

 

 

 

 

 

 

Figure 2: Example MPEG–7 audio waveform representation 

The Audio Spectrum Envelope (ASE) is a log-frequency power spectrum that can 

facilitate generation of a reduced spectrum of the original audio. This is performed 

by summing the energy of the power spectrum within a series of frequency bands. 

Bands are equally distributed between two frequency edges: loEdge and hiEdge. 

Default values of 62.5 Hz. and 16 KHz. correspond to the lower/upper limit of hearing. 

The spectral resolution r of the frequency bands within these limits can be specified 

based on eight possible values, ranging 1/16 of an octave to 8 octaves. Each ASE 

vector is extracted every 10 ms. from a 30 ms. frame (window) which gives a compact 

representation of the spectrogram of the audio. Audio Spectrum Flatness (ASF) 

describes the flatness properties of the spectrum of an audio signal within a given 

number of frequency bands. The flatness of a band is defined as the ratio of the 

geometric mean, i.e., the central tendency of a vector, and the arithmetic mean of the 

spectral power coefficients within the band. The AudioSpectrumBasis Descriptor is a 

container for basis functions for projecting a spectrum onto a lower-dimensional sub-



space suitable for probability model classifiers (e.g., neural networks and Hidden 

Markov Models.) The reduced basis consists of decorrelated features of the spectrum 

with salient information described more efficiently than with the direct spectrum 

representation. The Audio Spectrum Centroid (ASC) is the centre of gravity of a log-

frequency power spectrum. Unlike the previous MPEG–7 low-level descriptors, the 

ASC is of a scalar type and provides a high level of dimensional reduction at the cost 

of high information loss. The ASC provides information on the shape of the power 

spectrum and indicates whether a power spectrum is dominated by low or high 

frequencies. The ASC can be regarded as an approximation of the perceptual 

sharpness of the signal by indicating where the centre of mass of the spectrum is. 

Perceptually, it has a robust connection with the impression of brightness2 of a sound 

(Schubert et al, 2004). Seo et al (2005) applied the ASC to audio fingerprinting. An 

audio fingerprint is applied to recognising audio in the same way a human fingerprint 

is applied to identify an individual. Fingerprints are perceptual features (short 

summaries) of a multimedia object, and can be useful in applying search/retrieval 

queries and copyright detection. By converting the audio signal to mono, down-

sampling it and then transforming it to the frequency domain with FFT, Seo et al 

(2005) were able to create a reliable fingerprint matching system. The audio spectrum 

obtained was divided into 16 critical bands, and the normalised frequency centroid 

for each band was calculated. These centroids acted as fingerprints of the audio 

frame. Seo et al (2005) showed this approach to be robust through ’quality preserving’ 

signal processing steps, and that it out-performed other commonly used features, 

such as tonality and MFCC, in the context of audio fingerprinting. 

 

3.    MUSIC INFORMATION RETRIEVAL (MIR) 

Music is a combination of pitch, tempo, timbre, and rhythm, making analysis of music 

more difficult than text. Structuring a query for music is made difficult owing to the 

varying representations and interpretations including natural transitions in music. 

Adding to the complexity of music structure and query structure is the method of 

audio analysis. The format of an audio file limits its type of use since different file 

formats exist to allow for better reproduction, compression and analysis. Hence it is 

also true that different digital audio formats lead to different methods of analysis. 

Musical Instrument Digital Interface (MIDI) files were created to distribute music 

playable on synthesisers of both the hardware and software variety among artists 

and equipment, and because of its notational style the MIDI format allows analysis 

of pitch, duration and intensity (Doraisamy and Ruger, 2004). An excellent tool for 

analysis of MIDI files is the MIDI Toolbox (Eerola and Toiviainen, 2004) which is 

based on symbolic musical data but signal processing methods are applied to cover 

such aspects of musical behaviour as geometric representations and short-term 

memory. Recent work within polyphonic music has shown that similarity within 

different sections of a piece of music can aid in both pattern matching for searching 

large datasets and pattern matching within a single audio file (Foote and Cooper, 

2003; Meredith et al, 2001a; Dannenberg and Hu, 2003). Results from analysis of an 

audio stream are stored in a similarity matrix created by (Foote and Cooper, 2003). 

The similarity matrix is generated by measuring the difference between row and 

column for the same data. Data along the i0,j0 to i1,j1 diagonal will have an exact 

similarity, but any comparisons ’off’ the diagonal give a measure of how similar the 

two values are. Analysis is performed using short time Fourier transform to 

                                                         
2 5The brightness of a sound is indicated by the amount of high-frequency content. 



determine the spectral properties of the segmented audio, this is a variation of the 

discrete Fourier transform which allows for the influence of time as a factor. Bartsch 

and Wakefield (2001) used chroma based spectrum analysis technique to identify the 

chorus or refrain of a song by identifying repeated sections of the audio waveform 

with the results also being stored in a similarity matrix. The following range of 

applications vary from database search/retrieval applications and indexing systems 

that allow quicker user browsing, to automatic music replication systems based on a 

specific composer’s style. It should be noted that music recognition is still only in its 

infancy and has limited accurate results. The recognition of scanned text can have an 

accuracy of up to 95%, programs using speech recognition have 70-80% accuracy, 

whereas systems for music recognition only claim a 60-70% accuracy rating 

depending on the audio format, although new research is producing results of up to 

90% when using the MIDI format (Doraisamy and Ruger, 2004). 

MELody inDEX (McNab et al, 1997) is a ’Query-by-Humming’ application similar to 

systems developed by Ghias et al (1995) as well as Cater and O’Kennedy (2000). 

MELDEX allows a user to use a microphone to enter notes by humming a tune and 

then searches in a database for a similar match. To match user input with content 

held in the database, MELDEX primarily uses pitch and the fundamental frequency 

to process the signal for similarity matching. MELDEX filters the input to remove as 

many harmonics as possible, while preserving the fundamental frequency. The 

beginnings and ends of notes are defined using a technique primarily found in voice 

recognition, notes are dependent on the user using 'ta' or 'da' to hum the input, this 

causes a drop in amplitude of the waveform of 60ms at each utterance allowing each 

note to be more easily identified. MELDEX then uses ’string-matching’ to identify the 

input from the user with audio held in a database using approximation to score the 

results which are returned in order of accuracy. Similarly, the MelodyHound melody 

recognition system (Prechelt and Typke, 2001) was developed by Rainer Typke in 

1997. It was originally known as ‘Tuneserver’ and hosted by the University of 

Karlsruhe. It was designed initially for Query by Whistling, i.e. it will return the song 

in the database that most closely matches a whistled query. A more unusual method 

of input is where the user can enter information about a song in the form of Parson’s 

code. Each pair of consecutive notes is coded as “U” (“up”) if the second note is higher 

than the first note, “R” (“repeat”) if the pitches are equal, and “D” (“down”) otherwise. 

The first note of any tune is the reference point so it does not show up explicitly in 

the Parsons code and is entered as an asterisk (*). Parsons (1975) showed that this 

simple encoding of tunes, which ignores most of the information in the musical signal, 

can still provide enough information for distinguishing between a large number of 

tunes. Figure 3 shows the first line of a “12 Bar Blues” music score with the resultant 

Parson’s Code below. 

 

 

 

Figure 3: Parson’s code representation of a music score 

Humdrum is a general-purpose software system intended to assist music researchers, 

and consists of two distinct components: the Humdrum Syntax and the Humdrum 

Toolkit (Humdrum, 2008). The syntax provides a common framework for 



representing information in ASCII format. Within the syntax an endless number of 

representation schemes can be ’user defined’. The Humdrum Toolkit provides a set of 

more than 70 inter-related software tools.  

Themefinder (Sapp and Aarden, 2008) identifies common themes in Western classical 

music, Folksongs, and Latin Motifs of the sixteenth century. Themefinder provides a 

web-based interface of the Humdrum toolkit which indexes musical data for 

searching (Humdrum, 2008). This in turn allows searching of databases containing 

musical themes. Currently, the most commonly used Humdrum representation is 

**kern. Kern is a core pitch/duration representation. 

C-BRAHMS (Content-Based Retrieval and Analysis of Harmony and other Music 

Structures) (Lemstrom et al., 2003) concentrates on retrieving polyphonic music from 

large scale music databases containing symbolically encoded music. C-Brahms uses 

a number of different algorithms that allow music to be in various formats, including 

MIDI, monophonic and polyphonic. It also allows partial and exact matching 

approaches. C-Brahms uses a geometric representation of both the query pattern and 

the source pattern allowing a Euclidean measurement of difference. 

CubyHum is a ’Query by Humming’ application (Pauws, 2002) that attempts to detect 

pitches in a sung melody and compares these with symbolic representations of known 

melodies within a stored database. CubyHum estimates the pitch from the query by 

a technique called sub-harmonic summation (SHS) that was initially proposed by 

Hermes (1988). In short time frames SHS computes the sum of harmonically 

compressed spectra and selects the maximum sum result as the pitch estimate in that 

time frame. Standard signal processing techniques using short-time energy, pitch 

level shifts and amplitude envelopes are then used for finding note onsets. The 

resultant data is then combined to describe the pitch and duration of the query 

allowing normal transcription to the MIDI format for comparison with songs stored 

in the database. 

notify! Whistle is a query by whistling/humming system for melody retrieval similar 

to CubyHum along with a similar conversion of user queries to a MIDI format. By 

using a piano roll representation of the query the user is allowed to change the 

original input to account for errors (Kurth et al, 2002). However, unlike CubyHum 

which uses a string-based approach for comparisons, Kurth et al (2002) uses an index-

based approach for pattern matching. By describing songs as notes within documents 

represented by the form Di N and queries as Q N allows queries to be performed using 

set theory and is an alternative approach to the problem of incorrect notes and 

mismatches that are common with user generated input queries. 

Muscle Fish’s content-based retrieval CBR technology searches for audio files on the 

basis of how they sound (Wold et al, 1996). It can also be used to classify sound files 

or live sound inputs. An additional feature of Muscle Fish is its ability to cluster 

sound files according to category and search for sounds that are similar in their 

features. Muscle Fish’s approach is to analyze sound files for a specific set of 

psychoacoustic features. This results in a query vector of attributes that include 

loudness, pitch, bandwidth and harmonicity. A covariance-weighted Euclidean 

(Mahalonobis) distance is then used as a measure of similarity between a given sound 

example and all other sound examples. Sounds are then ranked by distance with the 

closer ones being more similar. 



Marsyas (MusicAl Research SYstem for Analysis and Synthesis) is a collection of tools 

aimed at audio analysis. The principle behind Marsyas is to allow researchers to 

utilise a standardised set of analysis tools, allowing them to collaborate and compare 

results using a level platform. Marsyas uses a semi-automatic approach that 

combines both manual and fully automatic annotation, giving a necessary degree of 

flexibility dependent on the research approach. Marsyas combines spectral analysis 

with pitch and harmonicity, and techniques using singular value decomposition 

(SVD), principal components analysis (PCA) and multidimensional datasets (Jolliffe, 

1986). 

SAM is a set of programs designed to read/record digital audio, extract a pitch 

contour, compute a similarity matrix, find clusters of similar sequences and build an 

explanation of the music in terms of structural relationships (Tanguiane, 1993). 

Using pitch extraction SAM identifies potential areas where the signal amplitude is 

low (i.e. signal noise) and areas where there are clear peaks (notes). Similar groups 

of notes are then identified and a similarity matrix is built. This matrix is then used 

to identify similar groups of notes within the audio file. One area identified by SAM 

is that the similarity between groups of notes is not transitive - in that if group A was 

found to be similar to group B, and group B was found to be similar to group C, it did 

not mean that group A was similar to group C. This was because exact pattern 

matching was not used and limits were set as to how exact the match had to be. 

Within the area of music information retrieval, cellular automata, genetic algorithms 

and neural networks are primarily used as machine learning and composition tools. 

They have been used for the analysis of a particular composer’s style and then to 

create/simulate a similar piece of music based on this analysis (Pearce and Wiggins, 

2002). Initial results have shown that some (experienced) musicians who are not 

familiar with a particular composer’s work find it difficult to tell the difference 

between the original and synthesized music. For self-similarity and pattern 

matching, DSP techniques combined with pattern matching using scalars, vectors 

and matrices are more common. 

 

4.   NETWORKED AUDIO 

Packet delay from network congestion has been partially alleviated using routing 

protocols and application protocols such as Real-time Transport Protocol (RTP). 

These have been developed to assign a higher priority to time dependent data. 

However, it is also the case that some servers automatically dump packets that are 

time sensitive, so streaming applications have had to resort to ‘masking’ the packets 

by using ’HTTP port 80’ so packets appear as normal web traffic. The latest addition 

to network protocols specifically addressing ‘real-time’ communication include ’Voice 

over Internet Protocol’, a technology that allows telephone calls using a broadband 

Internet connection across a packet switched network instead of a regular (or analog) 

phone line. 

It is necessary for standards to be defined for communication across networks. 

Computers need a specific set of rules and guidelines to communicate in the same 

way humans need language to be able to communicate with each other. Without a 

predefined set of guidelines one computer wouldn’t understand what the other was 

saying – just as a French person (who doesn’t speak Chinese) wouldn’t understand a 

Chinese person when they both talk in their native languages. TCP/IP was the first 



recognized standard for communication between computers across a network. 

Protocols are an open set of rules of behaviour that are independent of an operating 

system and architectural differences. They are available to everyone to allow for 

development and are changed on consensus. These protocols are published as 

‘Requests For Comments’ (Socolofsky and Kale, 2008) and contain the latest versions 

of the specification of all standard TCP/IP protocols. Each layer can contain any given 

number of protocols that perform specific functions relating to that layer. It should 

be noted that each layer does not know or care how layers above and below work, 

simply that data is passed between them. The main benefit of TCP/IP is that it 

provides interoperable communications between all types of hardware and operating 

systems (Stevens, 1993). Each layer does not define a single protocol, but represents 

a communication function that can be performed by any amount of different protocols.  

One of the most recent additions to network communication is the inclusion of VoIP 

(Voice over Internet Protocol). This new technology allows users to make telephone 

calls using a computer to either another computer with an Internet connection, or a 

telephone for the cost of a local call. VoIP converts the voice signal from a 

telephone/microphone into a digital signal that travels over the Internet and is 

converted back at the receiving computer. One of the driving forces behind VoIP is its 

cost; the Internet does not recognize state and country borders. With VoIP technology, 

the distinction between local, long-distance and international calling largely 

disappears, so callers can save on long-distance and international charges. VoIP is 

not without its problems that are associated with real-time traffic across networks: 

packet delays/losses (Jiang and Schulzrinne, 2002). One of the main issues faced by 

Internet telephone applications such as Skype and Vonage is the quality and 

reliability of communication via the Internet. The traditional public switched 

telephone network sets a high standard for IP telephony to match before mainstream 

acceptance. 

In order to make audio files more manageable it is necessary to reduce their size and 

there are a number of ways in which this can be done. One method is to reduce the 

sampling frequency (Menin, 2002) of the recording system. However, this has some 

serious side-effects as far as sound quality is concerned since high-frequency content 

of the sound is lost, leading to recordings lacking in brightness and clarity. Mp3 

compression uses a number of perceptual coding techniques to reduce file size and 

yet maintain quality audio. Through the use of lossy compression the sample rate of 

Mp3 files determines the level of quality. The compact disc (CD) audio format uses a 

16 bit sample rate (samples measured every 44.1 kHz or 44,100 slices every second) 

which equates to 5.2 Mb per minute of recording. The result in real terms is Mp3 

coding shrinks the original audio signal from a CD (PCM format) by a factor of 12 

without sacrificing sound quality, i.e. from a bit rate of 1411.2 Kbps of stereo music 

to 112-128 Kbps.  

4.1    Jitter control 

Streaming audio over a network has one serious problem associated with it: Jitter. 

Jitter is when media being played back starts and stops as the packets of the stream 

are sent inconsistently. Because of the nature of networks, it is possible for packets 

sent to arrive in a different order from which they were originally sent. The receiving 

application then has to restructure these into their correct order. In the context of 

streaming this can be problematic as portions of audio may arrive too late to be 

played, leading to sections of the audio being dropped altogether and making the 

audio sound jittery. This effect is compounded by the quality of the transmission and 



high quality audio signals require a large number of packets that in turn require a 

larger bandwidth (Bush, 2000).  

Jitter control can be managed at hops across the network. At each hop a packet is 

examined to determine its position relative to the rest of the stream. If packets are 

found to be ’lagging behind’ they can be forwarded with priority over other packets in 

the same stream. Likewise, packets that have managed to jump the queue are ’slowed 

down’ to allow others to catch up. Jitter occurs more frequently when streaming audio 

across wireless networks. The nature of wireless communication and its 

inconsistencies amplify the effects of packet loss when bursty packet losses occur. 

Streaming media players are almost indifferent to the format of an audio file before 

streaming but results from analysis vary greatly depending on the format used. The 

quality of the audio signal received depends greatly on both jitter and file formats. 

4.2   Streaming media 

When surfing the web, it is common to find embedded audio and video that need 

additional applications to handle the content. Streaming Media is the action of 

sending encoded (digitized) audio and/or video data out across the Internet as a series 

of small data packets that may be viewed by the end user in real time. The data 

stream is accessed via a media Player (Windows Media Player, iTunes or Quicktime). 

Essentially the Media Player captures the data packets (audio stream) and places 

them in their respective order for real time viewing. The audio and/or video input 

source or file is streamed via either a hardware or software encoder. A hardware 

encoder takes input from an external audio/video input source, encodes it and then 

streams it directly. However, a software encoder can encode files being played by an 

internal (software) player as well. In most cases the nature of the broadcast 

determines whether a hardware or software encoder is used, for example a “live” 

broadcast across the Internet of a concert will utilise hardware encoders directly 

encoding the input before broadcast and a radio station using the Internet as a 

broadcast medium will use software encoders to convert the ’pre-recorded’ digital 

media into audio streams for broadcast. 

There are two major parts to most streaming media servers: (1) the component 

providing the content (i.e., source clients) and (2) the component which is responsible 

for serving that content to listeners. Icecast (Icecast, 2008) is a streaming media 

server which currently supports Ogg Vorbis and Mp3 audio streams. It can be used 

to create an Internet radio station or a privately running jukebox and many things 

in-between. It is versatile in that new formats can be added relatively easily and it 

supports open standards for communication and interaction. Through a web-based 

interface the user can manipulate many server features. Icecast allows the 

administrator to move listeners from one source stream to another (mountpoints), 

disconnect connected sources, disconnect connected listeners, gather statistics and 

many other activities. Ices is a source client for a streaming server (e.g. Icecast). The 

purpose of Ices is to provide an audio stream to a streaming server without any regard 

for the number of listeners connected or the limitations in place, e.g. the amount of 

bandwidth or the number of ports available. It is not necessary for Ices to be on the 

same physical machine as the streaming server (Icecast) since using separate 

machines helps to alleviate the processing needs. However, it is easier to manage 

both the server and source client when they are located on the same machine. The 

Ices configuration file is also an XML file.  

GStreamer is a development framework for creating streaming media applications. 



GStreamer’s development framework makes it possible to write almost any type of 

streaming multimedia application. The GStreamer framework is designed to make it 

easy to write applications that handle audio, video or both. One of the most obvious 

uses of GStreamer is using it to build a media player. GStreamer includes 

components for building a media player that can support a very wide variety of 

formats, including MP3, Ogg/Vorbis, MPEG–1 and 2, AVI, Quicktime, MOD and 

more. Its main advantages are that the pluggable components can be mixed and 

matched into arbitrary pipelines so that it’s possible to write a full-fledged video or 

audio editing application.  GStreamer’s core function is to provide a framework for 

plugins, data flow and media type handling/negotiation. An element is the most 

important class of object in GStreamer. An element has one specific function, which 

can be the reading of data from a file, decoding of this data or outputting this data to 

a sound card or any other form of output. By chaining together several such elements, 

a pipeline is created that can perform a specific task, e.g. media playback or capture. 

GStreamer ships with a large collection of elements by default, making the 

development of a large variety of media applications possible simply by chaining 

different elements depending on the needs of the developer. A basic media player is 

shown in Figure 2.13, shows a pipeline containing elements and their source pads 

required for basic playback of an audio file encoded in the ogg format. It should be 

noted that the output element ’alsasink’ is required on Unix/Linux operating system 

for soundcard output. 

 

 

 

 
Figure 4: A basic Gstreamer media player 

4.3   Streaming audio approaches to packet loss 

Solutions to packet loss, jitter and associated problems within streaming audio have 

included research into a number of varying techniques. The probability of packet loss 

across bursty networks has been modelled where time delay is used to control the 

flow of packets and measure the difference between the current time and the time 

the packet arrives (Lee and Chanson, 2004). This technique can be used to predict 

network behaviour and adjust audio compression based on current network 

behaviour. Higher compression results in poorer quality audio but reduces network 

congestion through smaller packets. A variation of this theme has been used to create 

new protocols that allow scalable media streaming (Mahanti et al, 2003). 

Randomising packet order to alleviate the large gaps associated with bursty losses 

has been implemented, where the problem was reduced by re-ordering the packets 

before they are sent and reassembled into the correct order at the receiver 

(Varadarajan et al, 2002). This reduced the bursty loss effect since packets lost were 

from different time segments. Although nothing is done to replace the missing 

packets, overall audio quality improved through smaller gaps in the audio - albeit 

more frequent.  

A number of techniques have been developed that use some form of redundancy where 

repetition replaces lost audio segments have been developed. Sending packets 

containing the same audio segments (but with a lower bit-rate) alongside the high 



bit-rate encoding increases the likelihood of packet arrival but at the loss of audio 

quality, as well as increasing the overall network band-width usage (Perkins et al, 

1998). Another approach to using redundancy in the form of unequal error protection 

(UEP) has been developed, where improvement is achieved with an acceptable 

amount of redundancy using advanced audio encoding (AAC) (Wang et al, 2003). 

Segmentation of the audio into different classes such as drumbeats and onset 

segments allows priority to be applied to more important audio segments with an 

Automatic Repeat-reQuest (ARQ) applied to high priority segments and a 

reconstruction technique for the replacement of low priority segments based on the 

AAC received in previous segments. One of the more recent methods of interpolation 

of low bit-rate coded voice where observation of high correlation of linear predictors 

within adjacent frames allows descriptions to be inserted using linear spectral pairs 

(LSP), and then reconstruct lost packets using linear interpolation has been used by 

Wah and Lin (2005). This allowed packet-loss replacement without increasing the 

trans-mission bandwidth. Wah and Lin (2005) does point out that this approach is a 

trade-off between the quality of the received packets and the ability to reconstruct 

lost packets. 

4.4     Voice communication 

Traditional methods for interpolation between lost packets are still popular with 

Internet telephone applications where timing is critical and limited signal 

degradation is acceptable. Research into Forward Error Correction (FEC) range from 

Waveform Similarity OverLap Add (WSOLA) (Liang et al, 2003) where lost packets 

of a section of voice are merged based on pitch similarity Figure 5 rather than 

straightforward interpolation. WSOLA decomposes the input into overlapping 

segments of equal length, which are then realigned and superimposed to form an 

audio output of equal and fixed length. Using a windowing technique minimises the 

changes in signal strength of the two segments. This leads to increased processing 

overhead, but concealment is possible if packet loss is limited to one or two sections. 

 

 

 

 
Figure 5: WSOLA loss concealment (Liang et al, 2003) 

FS-CELP (Lin and Wah, 2005) is an implementation of the Federal Standard 1016 

Code Excited Linear Prediction, based on the principle of linear predictive coding. 

Linear Predictive Coding (LPC) is a powerful speech analysis technique, and one of 

the most common methods for encoding good quality speech at a low bit rate. LPC 

provides relatively accurate estimates of speech parameters. Using multi-description 

coding, finite state code excited linear pairs (FS-CELP) allows multiple descriptions 

of the signal to be encoded into two streams - odd and even samples. Reconstruction 

of the original signal is possible if only one of the two streams is lost. Only when there 

is loss of both odd and even streams is error correction not possible. Building 

redundancy into packets is a popular method for FEC. FreePhone (Bolot et al, 1999) 

uses an adaptive approach where redundancy is coded de-pending on the loss 

characteristics of the network at that time using the real time control protocol RTCP 

feedback. Bolot et al (1999) justifies this by pointing out that there is little point in 



using high levels of redundant information encoded into the packets if there is little 

chance of it being used. The actual method for FEC used is a simple ’next packet 

scenario’ where packet n is encoded with not only its own data, but a redundant 

version of packet n-1. In the event that packet loss occurs for packet n-1, the packet 

can be reconstructed using the information encoded into packet n. Using an adaptive 

approach minimises the extra network bandwidth required to carry the redundant 

data, thereby reducing the overhead required in using FEC. Traditional ARQ (Lin et 

al, 1984) methods have been improved with the use of Gap Detection in packets where 

a large number of packets in sequence are lost. Detection of large gaps allow for a 

retransmission request before buffer levels run low, thereby allowing sufficient time 

for the missing segments to be resent. Another approach is to use timeout detection, 

where packet loss is detected by estimating the arrival time of packets. If a packet 

has not arrived by a certain deadline, it is assumed to be lost and an ARQ is sent. 

Both these techniques have their merits under certain conditions, but a combination 

of these has been used to improve overall performance (Sze et al, 2001). The main 

drawback of this approach is that there is no reduction in the buffer size. 

4.5   Audio Repair 

Most forms of audio analysis using computers to identify the characteristics of a 

sound (e.g. amplitude, velocity, wavelength and frequency) involve digital signal 

processing (DSP). A varied number of different techniques have been used to analyse 

audio in respect of different qualities. The results required determine the type of 

analysis that is used. However, almost all forms of DSP are based on one core 

principle, Fourier analysis (also known as spectral analysis, frequency analysis, or 

harmonic analysis). Fourier analysis is a mathematical technique for describing a 

series of waves in terms of repeated cycles of components. One of the core principals 

of Fourier analysis is that it is based on an infinitely repeating signal. The Discrete 

Fourier Transform (DFT) transforms a series of discrete observations measured over 

a finite range of time into a discrete frequency-domain spectrum (Williams, 1997). 

The resultant output of DFT analysis is a continuous frequency spectrum that 

includes all the frequencies. It should be noted that results from Fourier analysis 

depend on the sampling interval used and a large sample interval can lead to 

information being missed. The fast Fourier transform FFT is a discrete Fourier 

transform algorithm that reduces the number of computations needed from O(N2) to 

O(N log N) operations. 

 

 

 

 

 

 

 

Figure 6: A waveform with rectangle windowing applied 



One of the shortcomings of the Fourier Transform is that it does not give any 

information on the time at which a frequency component occurs. One approach which 

gives information on the time resolution of the spectrum is the short time Fourier 

transform (STFT). STFT uses a moving window over the signal and the Fourier 

transform is applied to the signal within the window as the window is moved. One of 

the main problems associated with DFT analysis is leakage. A DFT is calculated over 

a finite sample using a rectangular window where abrupt changes at the beginning 

and end of the window can cause leakages (non-zero values). Other windows that 

reduce leakage more than using a rectangle window include the Hann window and 

the Hamming window which is similar to the Hann window except raised on a 

pedestal (Lyons, 2004). A window is applied to both the beginning and the end of the 

sample interval to smooth out to a single common amplitude value. Figure 6 shows a 

waveform truncated with a rectangular window. By applying a Hann/Hamming 

window this truncated signal can be smoothed at both ends bringing the waveform to 

zero. This is achieved by multiplying the signal samples by the Hamming function, 

the samples at the centre are 'windowed' by the largest factor and this decreases in a 

smooth sinusoidal fashion as it moves away from the centre with the samples at each 

end being multiplied by zero. The choice of 'window' is signal dependent and varies 

depending on analysis requirements. The Hann window results in less leakage than 

the Hamming window, but with a trade-off of more signal-to-noise ratio. 

5.    PATTERN CLASSIFICATION AND MATCHING 

There are distinct differences between the definitions of pattern classification and 

pattern matching. Pattern classification aims to classify data based on either a priori 

knowledge or on statistical information extracted from the patterns. The patterns to 

be classified are usually groups of measurements or observations defining points in 

an appropriate multidimensional space. This is in contrast to pattern matching, 

where the pattern is rigidly specified. Pattern recognition is more complex when 

templates generate variants. For example, in English, sentences often follow the N-

VP (Noun - Verb Phrase) pattern, but some knowledge of the English language is 

required to detect the pattern (Jurafsky and Martin, 2000). Regardless of whether 

pattern classification or matching is used, there are three elementary steps to be 

performed prior to matching/classification: sensing, segmentation/grouping and 

feature extraction and (Duda et al, 2000). 

(Schedl et al., 2011) addresses the problem of similarity measurement between music 

artists via text-based features extracted from Web pages thorough evaluation of 

different term-weighting strategies, normalization methods, aggregation functions, 

and similarity measurement techniques. (Zhang et al., 2009) uses an incremental 

Locality Sensitive Hashing algorithm to support efficient retrieval processes with 

different kinds of queries for music similarity measures. (Turnbull et al., 2008) 

developed a computer audition system that can both annotate novel audio tracks with 

semantically meaningful words and retrieve relevant tracks from a database of 

unlabeled audio content given a text-based query and in (Turnbul et al, 2007) they 

use the weighted mixture hierarchies expectation-maximization algorithm which has 

been specifically designed to handle real-valued semantic association between words 

and songs, rather than binary class labels. 

5.1   Sensing  

 

The input to a pattern recognition application can be in many forms such as images, 

speech/sound or text. The difficulty lies in the limitations of the input image 



resolution, the volume of data in a sound file or signal distortion. 

5.2    Segmentation and grouping  

Segmentation is one of the most difficult problems in pattern recognition. For 

example, in speech recognition an application may need to recognize individual 

phonemes and combine these to form the word. Consider the words “sheep” and 

“shop”, the speaker will use different positions of his/her lips to pronounce the “sh” of 

both words. When saying the word “Sheep” the speaker will have their lips tight to 

the face but when saying the word “shop” the lips will be in a rounder form in 

preparation for the “op” portion. This is commonly referred to as anticipatory 

coarticulation, commonly known as rounding (Bilmes and Bartels, 2005), and lowers 

the spectrum of the “sh” when compared to the word “sheep”. Another example of the 

segmentation problem is in the area of image recognition. Lamdan et al (1988) 

present the problem of objects in a scene that may be overlapping and partially 

occluded. 

 
5.3     Feature extraction  

The border between feature extraction and classification is difficult to specify. A 

feature extractor that gives an ideal representation of a subject would make 

classification almost unnecessary. Conversely, a classifier that was all powerful 

would make a feature extractor redundant. The definition of the role of a feature 

extractor is to characterise an object to be recognised by measurements whose values 

are very similar for objects in the same category, and very different for objects in a 

different category, i.e., ideally to extract distinguishing features. The choice of 

distinguishing features is a critical step and depends on the characteristics of the 

problem domain. Having prior knowledge can be invaluable when choosing a feature. 

However, example data for training sets can be equally if not more valuable 

depending on the classification method used (Duda et al, 2000). Until recently, the 

most common features extracted for audio processing were the Mel-Frequency 

Cepstral Coefficients (MFCCs), more specifically speaker recognition, sound 

classification, and segmentation of audio using sound/speaker identification (Kim et 

al, 2004). 

5.4     Classification  

A complete pattern recognition system consists of a sensor that gathers the 

observations to be classified or described for all feature extraction mechanisms that 

computes numeric or symbolic information from the observations; and a classification 

or description scheme that performs classification or observation description, relying 

on the extracted features. The classification or description scheme is usually based 

on the availability of a set of patterns that have already been classified or described. 

This set of patterns is termed the training set and the resulting learning strategy is 

characterised as supervised learning. Learning can also be unsupervised, in the sense 

that the system is not given an a priori labelling of patterns. Instead it establishes 

the classes itself based on the statistical regularities of the patterns. The 

classification or description scheme typically uses either a statistical or syntactic 

approach. Statistical pattern recognition is based on statistical characterisations of 

patterns, assuming that the patterns are generated by a probabilistic system. 

Syntactic pattern recognition is based on the structural interrelation-ships of 

features. A wide range of algorithms can be applied to pattern recognition, from very 

simple Bayesian classifiers to much more powerful neural networks. Typical 



applications can include automatic speech recognition, classification of text (e.g. spam 

email), the automatic recognition of handwriting, or face recognition applications. 

5.5     Pattern matching  

Pattern matching is the act of checking for the presence of the constituents of a given 

pattern. In contrast to pattern recognition/classification, the pattern is rigidly 

specified. Such a pattern contains either sequences or tree structures. Pattern 

matching tests whether the data relevant structure exists, retrieves the aligning 

parts, and substitutes the matching part with something else. A common application 

of pattern matching is with text/string patterns. Queries are often posed with regular 

expressions and matched with respective algorithms. Sequences can also be seen as 

trees branching for each element into the respective element and the rest of the 

sequence, or as trees that immediately branch into all elements. Pattern matching is 

of most benefit when the underlying data structures are as simple and flexible as 

possible. 

5.6    Mel-Frequency Cepstral Coefficients (MFCCs)  

Mel-Frequency Cepstral Coefficients (MFCCs) (Stevens et al, 1937) are derived from 

a cepstral representation of an audio clip. The difference between the cepstrum and 

the Mel-Frequency Cepstrum (MFC) is that in the latter the frequency bands are 

equally spaced on the mel scale, which approximates the human auditory system’s 

response more closely than the linearly-spaced frequency bands used in the normal 

cepstrum. The cepstrum can be seen as information about rate of change in different 

spectrum bands. MFCCs often feature in speech recognition systems, such as systems 

which can automatically recognise numbers spoken into a telephone. They are 

primarily used in speaker recognition, which is the task of recognising people from 

their voices. MFCCs are increasingly finding applied to Music Information Retrieval 

(MIR) applications such as genre classification (Tzanetakis and Cook, 2002), audio 

similarity measures (Logan and Salomon, 2006). However, as the MFCC is cepstrum 

based, it is most successful in voice recognition. Voice recognition is divided into two 

classification: voice recognition and voice identification, and is the method of 

automatically identifying who is speaking on the basis of individual information 

integrated in speech waves. Voice recognition is widely applicable in the use of a 

speaker’s voice to verify their identity and control access to services such as banking 

by telephone, database access services, in-formation services, voice mail, security 

control for protected information areas, and remote access to computers. 

5.7    Clustering 

Pattern classifiers typically fall into one of two categories: supervised or 

unsupervised. A supervised classifier predicts the value of the function for any valid 

input object after having seen a number of training examples. To achieve this, the 

classifier has to generalise from the presented data to unseen situations in a 

reasonable way. Supervised classifiers typically feature in the following areas:  

 Artificial neural networks: an abstract simulation of a real nervous system that 

contains a collection of neuron units communicating with each other via axon 

connections. Such a model bears a strong resemblance to axons and dendrites in 

a nervous system. Rabiner and Juang (1993) and Frakes and Baeza-Yates (1992) 

have derived various techniques within the field of information retrieval for 

pattern recognition. 



 

 Bayesian statistics: The main distinguishing feature of a Bayesian approach is 

that it makes use of more information than the non-Bayesian approaches. 

Whereas the latter are based on analysis of hard data that is well-structured and 

well-defined, Bayesian statistics accommodates prior information which is 

usually less well specified and can even be subjective. Abdallah et al (2005) report 

work on music structure extraction with Bayesian probability methods.  
 

 Nearest Neighbour Algorithm: allows a small number of neighbours to influence 

the classification of an individual value, and is a nonparametric classifier. It has 

also been shown that the error rate of the nearest neighbour algorithm is at most 

twice as large as the best possible Bayesian error rate (Tzanetakis et al, 2003). 

Chuan and Chew (2004) have successfully implemented a nearest-neighbour 

algorithm to determine the key of a polyphonic music piece. 
 

 Gaussian mixture models: model the distribution of feature vectors. Gaussian 

mixture models widely feature in the Music Information Retrieval (MIR) com-

munity, notably to build timbre models as reported in Tzanetakis and Cook 

(2002). In Burred and Lerch (2003) a tree-like structure of Gaussian mixture 

models the underlying genre taxonomy: a divide-and-conquer strategy first 

classifies items on a coarse level and then on successively finer levels. 

 

The K-nearest neighbour (KNN) algorithm is a supervised learning algorithm where 

the result of a new instance query is classified based on a majority of K-nearest 

neighbours. The purpose of this algorithm is to classify a new object based on 

attributes and training samples. The classifiers do not have any model to fit and are 

only based on memory. Given a query point the k number of objects (or training 

points) closest to the query point is found by finding groups of objects such that the 

objects in a group will be similar to one another and different from the objects in other 

groups. 

 

 
5.8   String matching algorithms 

 

String matching algorithms are a basic component that is used in the practical 

implementation of software ranging from operating systems to search tools on web 

sites, e.g., Google, Yahoo. The algorithms underlying string matching are not new but 

have been refined over time to provide more efficient algorithms, and algorithms that 

are more suited to a particular purpose. For example, interest in string searching has 

increased dramatically within the fields of information retrieval and computational 

biology owing to the dramatic increase in text/database sizes needing management. 

A string can be defined as a sequence of characters over a finite alphabet å. The 

principal objective of string matching is to find all instances of a string p in a large 

string T of the same alphabet. There are three common approaches to the problem 

(Navarro and Raffinot, 2002). One is to read all the characters in the text one after 

the other and at each step update some variable so as to identify a possible 

occurrence. This is commonly referred to as the Brute Force algorithm. Another is to 

use a sliding window along the text T and within the window search backwards for 

an occurrence that matches p. The Boyer-Moore algorithm (Boyer and Moore, 1977) 

takes this approach. Finally, there is the Backward DAWG Matching (BDM) and the 

Backward NonDeterministic DAWG Matching (BNDM) algorithms by Navarro et al 

(1998) are similar to the second approach but more efficient by also searching for the 

longest suffix of the window that is also a factor of p.  

 

The brute force algorithm consists of checking, at all positions in the text between 0 



and n-m, whether an occurrence of the pattern starts there or not. Then, after each 

attempt, it shifts the pattern by exactly one position to the right. The brute force 

algorithm requires no pre-processing phase, and a constant extra space of memory in 

addition to the pattern and the text. During the searching phase the text character 

comparisons are done in any order. The time complexity of this searching phase is 

O(mn) with an expected number of 2n character comparisons. The Knuth-Morris-

Pratt (KMP) (Charras and Lecroq, 2004) algorithm turns a search string into a finite 

state machine and then runs the machine with the string to be searched as the input 

string. Execution time is O(m+n), where m is the length of the search string and n is 

the length of the string to be searched. The KMP algorithm uses information about 

the characters in the string being searched to determine how much to move along 

that string after a mismatch occurs. For example given the strings: s1= 

’aaaabaaaabaaaaab’ and s2 = ’aaaaa’, on the fifth comparison the ’a’ of s2 does not 

match the ’b’ of s1, whereas the brute force algorithm would simply move onto the 

next character with the mismatch of ’b’ in s1 found on the fourth comparison. This is 

avoided in the KMP algorithm by moving s1i + 1 and beginning the comparison again 

as seen in Figure 7 (c). 

 

  

        (a)                               (b)                                                        (c) 

Figure 7: Example string matching comparison 

 

The fastest known exact string matching algorithms are based on the Boyer-Moore 

algorithm (Boyer and Moore, 1977). Such algorithms are on average, sublinear, in the 

sense that it is not necessary to check every symbol in the text as was the case with 

KPM in the previous section. The larger the alphabet and the longer the pattern, the 

faster the algorithm works. It compares characters from right-to-left, starting with 

the last character in the search pattern. The speed of the Boyer-Moore algorithm is 

attributed to how well it deals with characters that do not match. When a mismatch 

is detected, the algorithm checks if the non-matching character is in the search 

pattern. If it is not in the pattern, then the pattern is shifted over the entire length 

of the search pattern. 

 

 
5.9    Regular Expressions 

 

Regular expressions are incorporated into many text editors, utilities, and 

programming languages to search and manipulate text based on patterns. For 

example, programming languages Perl, Ruby and Tcl have a powerful regular 

expression engine built directly into their syntax, and they feature in Unix type 

systems as the command, grep7. As an example of the syntax of a grep query, the 

regular expression nbet can be used to search for all instances of the string et that 

occur after word boundaries (signified by the nb). Therefore, in the string “Better than 

Eternity” nbet matches the Et in Eternity but not in Better, because the et occurs 

inside a word and not immediately after a word boundary. One of the main differences 

between regular expressions and other exact string matching algorithms is the use of 



wildcards. These give a fixed/unknown number of unknown characters to be ignored. 

For example, in the string, To say that no-one is better than Eternity in this genre is 

foolish, the regular expression n*ter will return better and Eternity as characters 

preceding the ter are ignored. A vast library of functions allow regular expressions 

extensive flexibility and it is for this reason they are also popular within text editor 

applications. The list of string matching algorithms is endless. The Karp-Rabin 

algorithm, Shift-Or algorithm, Simon algorithm, Colussi algorithm, Forward-DAWG 

Matching algorithm and the Horspool algorithm are but a few (Charras and Lecroq, 

2004). Each algorithm is best suited to a particular purpose. An algorithm may have 

a faster performance depending on the nature of the match, the data being used, the 

size of the query, or volume of data to be queried.  

 
5.10    Approximate string matching 

 

The scope of string matching (Boyer and Moore, 1977) is rich in problems with 

substantial mathematical and algorithmic structure. Quite often, these problems are 

well-motivated from an application standpoint. In standard string matching the 

problems typically involve finding all occurrences of a pattern string of size m in a 

larger text string of size n. In these problems, a text location matches a location in 

the pattern provided the associated symbols are identical.  Approximate string 

matching differs in that it is not always possible to find an exact match to the query 

string. One of the best studied cases of this problem is the so-called edit distance, 

which allows the deletion, insertion and substitution of simple characters in both 

strings. The edit distance has received much attention because its generalised version 

is powerful enough for a wide range of applications. The edit distance is calculated as 

D(A,B) between strings A = a1......am and B = b1......bn, A,B 2 å (å denotes the set of 

all sequences over å), where the distance is the minimum number of editing 

operations, including insertions and deletions of characters within the search string, 

required to transform string A into string B (Crochemore et al, 1994). A popular 

approach within the area Music Information Retrieval (MIR) is to use edit distance 

as a measurement of similarity. Work by Hu and Dannen-berg (2002) in an 

investigation of several variations of search algorithms was aimed towards improving 

search precision. Their aim was not to find the best matching algorithm for searching, 

but rather to find the best form of music representation by applying edit distance to 

similarity retrieval based on symbolic notes, pitch, loudness, and tempo, and 

combinations of these together with different windowing approaches. A popular 

choice of music representation to aid string searches is a monophonic format. 

Monophonic music can be represented by a one-dimensional string of characters, 

where each character describes one note or one pair of consecutive notes. Strings can 

represent interval sequences or sequences of pitches. Lemstrom and Ukkonen (2000) 

applied an edit distance measure to music comparison and retrieval with a simplified 

representation of monophonic music that gave only the pitch levels of the notes and 

ignored note duration. 

 

Hamming distance is a special case of the edit distance similarity metric. Whereas 

edit distance enables insertion and deletion of characters, Hamming distance can 

only compare strings of equal length and return only the number of differences 

between characters, or the number of errors that transformed one string into the 

other, and not the total difference value. For example, an edit distance measurement 

will return the value of 4 when measuring the distance of string A and B where A = 

5 and B = 1. However, Hamming distance measurement will return a value of 1, as 

the size of the difference between the values is not taken into account, only the 

number of characters that vary. A common example of Hamming distance is given 

through the use of a cube.  



 

6.   SIMILARITY AND CLASSIFICATION OF MUSIC FEATURES 

Clustering procedures are essential tools for unsupervised machine learning. Of the 

array of clustering methods the k-means clustering is one of the more common choices 

for solving clustering problems. The choice of starting point of the clusters has a direct 

result on the outcome. There is no optimum initial cluster positioning but some work 

has given consideration to this problem with varying outcomes (Bradley and Fayyad, 

1998; Zha et al, 2002) and a common rule of thumb, where the initial cluster centroids 

are initialized evenly across the data is the most often proposed solution. Our stance 

here is not to find some unique, definitive grouping of the ASE output, but rather to 

obtain a qualitative and quantitative understanding of large amounts of N-

dimensional MPEG–7 data by finding similarity within it by clustering the audio 

data. Since similarity is fundamental to the definition of a cluster, a measure of the 

similarity between two patterns drawn from the same feature space is essential to 

most clustering procedures. Because of the variety of feature types and scales, the 

distance measure(s) must be chosen carefully. Often the dissimilarity between two 

patterns using a distance measure defined on the feature space is calculated. The 

most popular metric for continuous features is the Euclidean distance. The Euclidean 

distance has intuitive appeal as it is often used to evaluate the proximity of objects 

in two or three-dimensional space. It works well when a data set has compact or 

isolated clusters (Mao et al, 1996). The drawback with direct use of Minkowski 

metrics is the tendency of the largest-scaled feature to dominate the others.  

 

 

 

 

 

                        (a) Manhattan                                          (b) Minkowski 

Figure 8: k-means distance measures (Manhattan and Minkowski) 

This problem can be seen clearly in Figure 8 (b) where clustering of the data is 

grouped at the middle cluster. Solutions to this problem include normalization of the 

continuous features to a common range or variance or other weighting schemes that 

take into account data with large variances3. Applying a cluster of 50 to the sample 

12 Bar Blues audio the repeating pattern of notes can still be seen clearly as is shown 

in  

Figure 9 (a). With closer inspection the grouping of each 10 ms. hop can be seen with 

different repeating sections highlighted in red in  

Figure 9 (b). 

                                                         
3 Changing the scale can adversely affect the cluster outcome 



 

  

 

(a) k-means cluster of 50 

 

(b) Similar cluster identification 

 
Figure 9: Example k-means cluster of 50 groups (a) and repeating clusters in (b) 

With the polyphonic audio now in a clustered format, identification of large sections 

of audio can be performed with various string matching techniques. Section 3.7 

discussed the various methods of measuring the differences/distance between two 

fixed length strings which are again dependent on the nature of the data. Although 

the clusters presented in Section 4.2.1 are identified by digits there is no actual 

numerical association other than as an identifier hence the clusters are presented in 

a nominal scale. For example, consider the sequence of numbers 1, 2, 3. It can be said 

that 3 is higher than 2 and 1, while 2 is higher than 1. However, during the clustering 

process when two similar samples are found they could be as easily identified by using 

characters or symbols provided a nominal scale is used. By comparing a string of 

clusters using the hamming scale any metric value is ignored and only the number of 

differences between the two strings are calculated. However, if a ranking system is 

applied then ordinal variables can be transformed into quantitative variables 

through normalization. To determine distance between two objects represented by 

ordinal variables, it needs to transform the ordinal scale into ratio scale. This allows 

the distance to be calculated by treating the ordinal value as quantitative variables 

and using Euclidean distance, city block distance, Chebyshev distance, Minkowski 

distance or the coefficient correlation as distance metrics. Without rank the most 

effective measure is the hamming distance. 

 

7.  SONG FORM INTELLIGENCE (SOFI) AUDIO REPAIR FRAMEWORK 

We now discuss Song Form Intelligence (SoFI), an intelligent music repair system 

that repairs dropouts in broadcast audio streams on bursty networks. On the server, 

the feature extractor analyses the audio from the audio database prior to streaming 

and creates a results file which is then stored locally on the server ready for the song 

to be streamed. The streaming media server then streams the relevant similarity file 

alongside the audio to the client across the network. On the client side the client 

receives the broadcast and monitors the network bandwidth for delays of the time-

dependent packets. When the level of the internal buffer of the audio stream becomes 

critically low the similarity file is accessed to determine the best previously received 

portion of the song to use as a replacement until the network can recover. The best 

matching portion of the song is retrieved from a temporary buffer stored on the client 



machine specifically for this purpose. In a typical MIR system similarity assessment 

is performed in three stages: Data reduction, Feature extraction  and Similarity 

comparisons. One of the key aspects of feature extraction is to maintain as high a 

level of reduction as possible without the loss of pertinent data. SoFI makes use of 

MPEG–7 features in the audio spectrum envelope representation. Songs stored in the 

database are analysed and the content description generated from the audio is stored 

in XML format. 

7.1    Clustering the Audio Spectrum Envelope (ASE) 

SoFi uses k-means clustering discussed in Section 4.2 as a method of identifying 

similarities within different sections of audio. Using a set number of clusters derived 

from iterative experimentation of the ASE data provides sufficient grouping. The 

ASE data files contain a varying number of vectors depending on the length of the 

audio, but as each vector contains a finite value in that each sample contains a 

variable quantity that can be resolved into components, an optimal value of k = 50 

clusters is used, a sample output of which is shown in Figure 10. This enables a 

reasonable computational process with the minimum processing power possible 

whilst maintaining maximum variety. Experiments above this value produced little 

or no gain, and with processing time increasing exponentially with each increase in 

cluster number, was considered too computationally expensive.  

 

 

 

 

 

 

 

Figure 10: Example k-means output 

The k-means output results in an array of numbers of 1 ! x where x is the number 

of samples in the ASE representation ranging from 1 to 50. A file lasting 30 s. will 

result in 3,000 clustered samples, and a file of duration 2 minutes, 45 seconds will 

produce 16,500 clustered samples. At this stage of the similarity computation 

process the cognitive representation of music can be construed from the output.  

 

 

Figure 11 shows the entire k-means cluster groupings for a full length audio song. 

For the human eye it is difficult to see similarities between sections at this level of 

detail but what can be clearly seen is the bridge section in the middle that is 



dissimilar to any other sections of the audio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Example k-means cluster representation of a song 

7.2    Similarity measurement 

Having an audio file classified and clustered into groups is the preliminary steps in 

determining similarity between large sections of the file. Where the ASE is a 

minimalist data representation/description and the k-means grouping is a cluster 

representation of similar samples at a granular level, SoFI makes use of a traditional 

string matching approach to identify large sections of audio. k-means clustering 

identifies and groups 10 ms. vectors of audio but this needs to be expanded to a larger 

window in order to facilitate network dropouts. Applying string matching large 

sections of the k-means cluster output can be compared for overall similarity and the 

best-effort match can be stored for reference. This file is then used on the client side 

for reference at a later time on the client machine when dropouts occur. To reduce 

unnecessary computation, SoFI only compares the clusters in previous sections for 

similarities as shown in Figure 12. This is based on the principle that when 

attempting a repair SoFI can only use portions of the audio already received. Any 

sections beyond this have not yet been received by the client and hence cannot be 

used. This reduces analysis comparisons considerably in early sections of the audio 

but as the time-point progresses the number of comparisons increase exponentially. 

 

 

 

 
Figure 12: A backwards string matching search 

Sample output in the example given below in  



Table 1 shows three different values. The left column is the starting point of the frame 

to search for, the middle column is the best match time-point of all the previous 

sections and the last column is the matching result i.e., how close the best match is 

represented in a scale between zero and one, the closer to zero the better the match. 

Layout of the data was initially intended to be in an XML format similar to the 

MPEG–7 data but this was considered unnecessary as there is no change of the data 

layout throughout the entire content of the file. Incorporating XML tags would be to 

include metadata for song and artist identification which is already stored in the 

filename. Incorporating XML tags would also include complexity when parsing the 

file, increasing processing requirements of the media application. 

Current time point  Matching time point  Match result 

7.4130000000000000+03  5.4400000000000000e+02  7.1199999999999997e-01 

7.4140000000000000e+03  5.4500000000000000e+02  7.1199999999999997e-01 

7.4150000000000000e+03  5.4600000000000000e+02  7.1199999999999997e-01 

7.4160000000000000e+03  5.4700000000000000e+02  7.1199999999999997e-01 

 

Table 1: Example string matching output 

7.3   Streaming Server 

SoFI uses the Ogg Vorbis audio file format as an audio compression tool for preparing 

files for broadcast. SoFI differentiates between fragmented packets and network 

traffic congestion. As with any media player, SoFI makes use of the resend request 

for corrupt individual packets, where one or two packets have time to be resent which 

will not affect the overall audio output. However, when large dropouts of 5, 10 or 15 

s. occur this will be unrecoverable and the audio output is affected. Ices2 sends audio 

data to an Icecast2 server for broadcast to clients. Where Icecast2 handles network 

connections from clients, Ices2 handles the data to be streamed. Ices2 has a 

command-line interface and once Ices2 is invoked it requires no more interaction from 

the administrator. Ices2 sends the encoded audio to Icecast2 for streaming. The 

configuration files enable SoFI to be configured for optimum sound quality in music 

broadcasts as bandwidth consumption by listeners is not salient. This is due to the 

fact that SoFI is a prototype that is not expected to cater for a large number of 

listeners. Alongside initial configuration settings, Icecast2 has a web interface that 

enables administrators to control mountpoints, metadata attached to the audio 

stream and the number of listeners on each mountpoint.  The main administration 

page also gives a breakdown of mountpoints detailing quality of the stream including 

the audio bitrate, the number of channels, the audio sample rate and the number of 

listeners currently connected to that particular mountpoint. From the main 

administration page navigation to the mountpoints enables the administrator to 

control listener access to individual mountpoints, move listeners to another 

mountpoint and update metadata and finally stop (kill) a mountpoint. Individual 

listeners are identified and controlled by navigating to the Listeners tab. Details for 

each mountpoint list each client connected, their IP address, the application clients 

are using to listen to the stream and an option to ’kick’ a listener from the mountpoint. 

Ices2 and Icecast2 are an essential to SoFI in that audio streams can be controlled 

directly for development and testing purposes, including the ability to start, kill and 

restart, when required, during development and testing. However, any streaming 

server would suffice provided that the similarity file either resides on the client 

machine or is contained in the metadata of the stream prior to commencement of the 



audio broadcast.  

7.4     Network monitoring 

Built into gStreamer is a message bus that constantly handles internal messages 

between pipelines and handlers. This message system enables alerts to be raised 

when unexpected events occur such as end-of-stream and low internal buffer levels. 

A watch method is created to monitor the internal buffer from the audio stream and 

when a pre-set critical level is reached an underrun message is sent to alert the 

application of imminent network failure. It should be noted that a network failure is 

not that a network is completely disconnected from the client machine, but is a 

network connection that is of such poor signal quality with a low throughput that 

traffic flow is reduced to an unacceptable level. For the purposes of testing this was 

simulated by throttling the bandwidth on the local client machine using the following 

command under Linux: sudo  tc  qdisc  add  dev  eth0  root  handle  1:0  netem  delay  

5000msec  25%. The qdisc function is the major building block for all Linux traffic 

control. Using qdisc allows the scheduling of packets between input and output of a 

particular queue. In the above example the eth0 network input is delayed by 5,000 

ms. with 25% of the incoming traffic suffering from an additional jitter effect. This 

simulates a typical almost out of range or signal interference scenario attributed to 

wireless networks, and thereby prevents complete network connection failure whilst 

at the same time throttling the throughput to almost failure point. 

 
7.5    SoFI output 

SoFI has a command-line interface and has no graphical user interface. However, 

feedback is provided through the use of an application window whilst the SoFI is 

running. This facilitates the notification of events occurring, including end of stream, 

network underrun and seek events occurring. Figure 13 shows a screenshot of the 

SoFI media application running with three important sections highlighted in red 

boxes. The highlighted box A in Figure 5.15 shows the text output to the listener in 

the application window. This window is encapsulated in the KDevelop IDE13 which 

was used to create and test the SoFI media application. However, when running as a 

stand alone application the terminal window under Linux or command window under 

Windows contain the same output: as text based feedback of the current stages of 

playback. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figure 13: SoFI swapping audio sources 

Synchronised to the gstClock() is a callback function within SoFI and on each cycle of 

1 s. a number of statistics are displayed. These include the current level of bytes held 

in the queue which provides feedback on the current buffer level of network data, the 

actual level of the buffer in size which can vary from 0% to 100% , nanoseconds 

providing the precise moment currently being played in the receiving audio stream , 

seconds: a conversion from nanoseconds to a more readable format for the listener, 

but which also assists in the next statistic and the current number of times feedback 

has been provided; when checked with the output above. Callback can provide 

valuable information in regards to synchronisation problems during playback of 

audio  

Boxes B and C highlighted in Figure 13 show the relevant method calls for displaying 

output to the listener when a source swap occurs during a critical network dropout. 

Box C presents the current time played, the seek time of the best match held in the 

similarity file and the start time of the playback from the locally stored audio of the 

radio stream. At the end of this a message indication of either seek successful or seek 

failed is displayed. Box B shows the actual states of the ir pipeline and file pipeline 

being changed from PAUSED and PLAYING respectively. Figure 13 shows 

application messages relayed to the user through the application window, and the 

actual method calls changing the playback state of the file pipeline and the ir pipeline. 

Whilst playback of the audio is from a previous section of the audio stored locally the 

ir pipeline maintains a buffer of received audio from the Internet radio stream and 

this has to be cleared to ensure as smooth a transition as possible from local playback 

back to the live stream. As a side effect a network error is flagged and reported.  The 

End Of Stream (EOS) message handle deals with the incoming Internet audio stream. 

When Icecast2 reaches the end of the current song in its playlist it sends an EOS 

signal to indicate the end of the current song. This enables Icecast2 to change not 

only the audio being played but also the audio format to a different format, i.e., from 

.ogg to .mp3 or vice versa. This EOS signals SoFI to close current threads, queues 

and pipelines in preparation for the next song to be broadcast. At this point, the 



previously stored audio is removed and a new locally stored recording of the new 

incoming audio stream begins. This allows SoFI to begin anew for the new song being 

received. 

 

8.   EVALUATION  

Initial investigations into identifying an optimal value for k were explored previously 

and the number of clusters is set to 50. Values above this offer no gain for the level of 

detail attained.  

Figure 14 shows a 5 second sample of audio with clusters of 30, 40 and 50 plotted. 

The different groupings for each 10ms sample can be seen in both box A and box B. 

Depending on the number of k clusters specified each sample will be classified 

differently. The majority of samples using 30 clusters are shown in green(*), the red 

samples (+) are for a value of 40 clusters and the 50 cluster grouping is shown in blue 

(x). In box A, a distinct difference between the values can be seen, where the 30 cluster 

group has been identified as predominantly between 0 and 5. The 30 cluster grouping 

in Box A also has a high number associated with groups at the high end of clusters 

between 25 and 30 which shows a high level of inconsistency between samples. 

Although the k cluster number is initially arbitrarily defined, consistency between 

clusters improves as the number of groupings increase. In  

Figure 14, box B shows the k cluster of 50 predominantly classified as the same 

cluster, whereas the 30 and 40 clusters produced more varied classifications. Tests 

involving k clusters over 50 produced similar results but created large increases in 

processing time.  

 

 

 

 

 

 

 

Figure 14: A comparison of cluster selection 

Table 2 shows the number of calculations required based on the chosen value of k 

clusters. The number of computations does not increase in a linear or exponential 

manner, but are based is the complexity of the music and its composition together 

with the duration of the audio. Song A requires more calculation due to its 

composition. Song A is the 12Bar Blues sample audio used as a testbed throughout 

this work. Since it contains a high level of variation between time frames, centroids 



and distances need to be re-evaluated more frequently. Songs B, C and D are a 

random collection from the music collection used within this work. The basic 

descriptions of which are presented in Table 3. When a choice of k clusters is set to 

above 40 a steady increase of computations can be seen in song A. This is contradicted 

when using clusters below the level of 40 where songs A,B,C and D all produce 

varying results. This can be partially attributed to the limited number of k clusters 

that differing values can be assigned to (Kriegel et al, 2005). More variations with 

fewer clusters mean more comparisons since one sample with a high value can offset 

the centroid of the associated cluster and this needs to be adjusted more frequently. 

k Clusters   Iterations  

 Song A Song B Song C Song D 

     

30  8040 3270 4410 6240 

40  6520 13280 6650 10160 

50  8750 12000 11000 13550 

60  10260 17040 15060 16800 

80  13520 19680 31360 18080 

100  19700 30700 39300 45700 
 

Song Audio Properties 

Duration(s) Degree of WTF 

A 3.86 Medium 

B 3.86 Medium 

C 3.20 High 

D 4.43 Low 
 

Table 2: k Cluster computations relative to size 

of k 

Table 3: k Cluster computations relative to 

the size of k 

 

6.1    String matching large clusters 

Having one 10ms sample classified presents the audio in a readable format that 

enables larger sections to be compared for similarities. Investigations into string 

length are shown in Figure 15. Within Figure 15 are 10 graphs showing the results for a 

complete search of a file given a specific ’query’. The query in question is a fixed length 

string taken from the k-means clustered output which results in a series of numerical 

values. Each numerical value is the cluster value for each given time-point and can 

be seen in the following sample output: 

...6,2,23,17,42,36,35,16,23,11,35,16,2,6,35,16,6,... 

...,2,35,41,40,46,42,17,... 

A query string of 1 s. in length contains 100 values and the entire clustered output of 

an audio file contains over 23,000 identified clusters. An example result is where the 

query string is taken from a random point in the middle of the file without any pre-

conceptions, i.e., it is not known whether the query string time-point is part of the 

chorus or a verse or even a bridge. This query string is then compared with the 

entirety of the clustered file and is noted as to how close a match it is to each segment 

across all time-points from beginning to end. 

 

 

 



 

 

 

 

 

(a) 1 s. search (b) 2 s. search 

 

 

 

 

(c) 3 s. search (d) 4 s. search 

 

 

 

(e) 5 s. search (f) 6 s. search 

 

 

 

 

(g) 6 s. search (h) 10 s. search 

Figure 15: A string matching comparison: With a string length equivalent to 1 s. in (a), stepped by 1 s. up 

to (f) and stepped by 2 s. in (g) and (h) 

The closer to a ranked score of zero the better the match. Within each graph in Figure 

15, one clear match value can be seen. This is the time-point at which the original 

query string was sampled and will always give an exact match. Other matching 

points have clearly been shown as the best match in the first quarter of the song as 

indicated in each graph. However, the main focus is on the number of matches across 

the full duration of the audio file that indicate a clear result in regard to other sections 

of the audio. Although the ’best match’ shown in Table 4 shows an average match ratio 



of around only a 0.7 match ratio in relation to the nearest other matches, this is 

considerably close. 

Search string 

in seconds 

Match result No. matches below 

0.8 

1 0.6931 6 

2 0.7463 5 

3 0.7110 5 

4 0.6983 4 

5 0.7005 4 

6 0.7006 4 

8 0.7416 3 

10 0.7662 5 

Table 4: String comparison results for 1 to 10 s. 

Also given in Table 4  is the number of matches that have been found to be below 0.85. 

Although the best score in the table is .6931 it can be clearly seen that other sections 

have been identified as similar which gives an indication of the repetitiveness of the 

audio. However, as the initial query string length increases, either the ’score’ 

decreases or the number of matches found decreases giving a reduction in accuracy 

whilst determining the best match. Add to this the need to replace sections of audio 

when dropouts greater than 1 s. occur eliminates the choice of using 1 or 2 s. length 

queries as sample criteria whilst searching for matches. In graphs (a) and (b) of Figure 

15, a very close match can be seen marginally to the left of the original query time-

point. In theory this could cause problems when trying to repair bursty errors as it is 

too close to the live stream time-point and the media application will have only a very 

limited time frame in which to recover the network. Although more possible choices 

appear, the accuracy is reduced, balance between the extreme lengths of queries as 

shown in Figure 15 can be seen by using a 5 s. length as shown in Figure 15 (e). The 

purpose of graphs (a) to (h) in Figure 15 is to show results of matching sections of audio 

found throughout the audio file. For the purpose of repairing bursty dropouts the 

media section of SoFI can use only previously received portions of the live stream up 

to the point at which network bandwidth/through-put becomes unstable. Figure 16 

shows another random time-point chosen near the end of a different song than the 

song used in Figure 15. Using 5 s. as a query length a match success can clearly be seen 

as identified by the best match indicator in Figure 16. Only one other possible match 

can be seen and this match has a relatively low match ratio of 0.87. All other 

comparisons resulted in near and above 0.95 - a match at this level would be 

considered almost unusable. 



  

Figure 16: A 5 s. query on only preceding sections Figure 17: A 5 s. query from only 30 s. of audio 

Figure 17 represents a worst case scenario where a network dropout occurs near the 

beginning of a song and also shows the query result of a dropout occurring after 30 s. 

of audio have been received. The best match ratio is now only just below 0.89 and only 

marginally better than any of the other samples. It is this level of a best match that 

the phrase best-effort can be used in pattern matching to its fullest. Using this portion 

of audio as a starting point to replace the break in the live stream will simply mask 

the error from the listener, although it will be apparent. At this level the attempted 

repair is merely to replace a complete loss of signal to minimise the level of distraction 

caused to the listener. A subjective test by listeners is more a measurement of the 

success of the replacement than the actual values displayed. Table 5 shows the average 

match for cluster string lengths of between 1 and 20 s. As the time span increases the 

accuracy of the match decreases. The interesting point to note in Table 5 is the jump 

between 0.6534 for a 1 s. query string and 0.6994 for a 2 s. query string. This is due 

to too many false positives of a match result for such a short query string.  

Time (s.)  Average match 

1  0.6534 

2  0.6994 

...  .... 

10  0.7918 

12  0.8007 

15  0.8121 

20  0.8365 

Table 5: Average match ratio across all song segments 

The problem of too many successful matches can be seen more clearly in Table 5. Both 

the 1 and 5 s. queries returned the same time-point as the best possible match for the 

starting time-point of the query. However, additional matches below the best match 

result using 5 s. were found with only 1 s. of audio. This can lead to sections of audio 

that may be used which are not an accurate replacement for dropouts of over 1 s. in 

length. Using a 5 s. length reduces this possibility whilst increasing the likelihood of 

the audio following on from the query string time-point still being correct. 

 



 

 

 

 

 

Figure 18: A comparison of 1 and 5 s. query strings 

Of the songs tested, one of the most problematic was by the artist Enya. Although the 

structure of the songs by Enya are repetitive in principle, they do not strictly adhere 

to the Western Tonal Format (WTF) definition. For example, the song ‘Orinoco Flow’ 

follows the verse/chorus/bridge/-verse/chorus structure and yet repeats of the chorus 

are not composed exactly the same each time they are repeated. This presents 

problems when matching ’chorus’ sections as well as verses and bridges. The match 

ratio expected for a verse is expected to be lower than for a chorus, where the verse 

usually contains the same underlying music (guitar, drums, piano) in the same 

repeated manner for different sections. The lyrics, however, can, and do, change for 

each verse throughout the song, thereby leading to a lower match percentage. In the 

case of work by Enya however, not only do the verses change but the chorus is 

different also. To add to the complexity of an uncertain structure, Enya changes the 

underlying music but not the lyrics for each repetition of the chorus. For example the 

drum rhythm and guitar rhythm appear ’out of sync.’ compared to other repetitions 

of the chorus. 

 

 

 

 

 

 

 

 

 
 

Figure 19: Two ’similar’ 5 s. segments 

In  



Figure 19, a 5 s. segment of the ASE representation of the first chorus of ‘Orinoco 

Flow’ can be seen. The time-point it starts at is relative to the start of the first lyric 

in the chorus. When compared to the next time the same lyrics are repeated, as 

shown in the lower plot in  

Figure 19 an overall difference of the audio composition for the equivalent section can 

be seen. Figure 18 and Figure 19 show the full audio file as a wave representation 

and clustered format respectively. Clear similarities of the overall structure of 

Enya’s music can be clearly seen. The bridge section is clearly visible in both 

figures, as well as similarities between the start and end of the song in the way the 

overall strength of the wave representation is somewhat similarly represented in 

the clustered representation. It can be implied from this that best-effort results 

would be similar to previous examples. However, shown in Figure 19 is the match 

ratio result for the time segments used in  

Figure 19 and the corresponding best match is not at the most optimal position. The 

correct time point is actually 10 s. following on from this point. It can also be seen as 

a high match ratio at the beginning of the audio where no lyrics are performed. This 

could possibly lead to the conclusion that the underlying music has more influence 

than the vocals in the song, although this would need to be further investigated. To 

explain the reason for the ’miss-classification’ occurring in the case of this song, the 

music is timed differently for each different repetition of the lyrics in further sections. 

  
Figure 18: A two channel wave audio file Figure 19: figure 18 as cluster representation 

Throughout almost the entirety of ‘Orinoco Flow’ a repetitive music pattern is played 

and as lyrics change the music remains the same during both verse and chorus. The 

only deviation from this pattern occurs during the bridge section. The result of this 

continuous repetition produces a best match because the music frequencies are more 

dominant than the lyrics. This leads to a false positive match where the underlying 

music is the same but the section matched is not correct.   

 

 

 



 

 

 

 

 

Figure 20: Match ratio for one 5 s. segment from Figure 19 

 

Search 

string (s.) 

Match result Difference from 

average 

1 0.6737 -0.0194 

2 0.7260 -0.0203 

3 0.7523 +0.0413 

4 0.7680 +0.0697 

5 0.7795 +0.0790 

6 0.7958 +0.0952 

8 0.8145 +0.0729 

10 0.8339 +0.0677 

Table 6: A comparison of match ratio across all song segments with Orinoco Flow 

Table 6 shows a comparison of the match ratio for Enya’s ‘Orinoco Flow’ alongside 

the difference between the average match ratio for durations of 1 to 10 s. The results 

’indicate’ a better match for time lengths of over 2 s. but many of these matches may 

be false positives. Table 6 together with Figure 20 show how music that is not strictly 

in WTF can produce what appear to be good match sections, but in reality are poor 

substitutes when better sections should have been identified. 

 
9.     CONCLUSION 

Evaluation of SoFI using both subjective and objective techniques was performed. 

Results show a close correlation between similarly identified segments when 

compared to non-similar sections. Subjective evaluations with test subjects from 

simulated example scenarios show a greater level of acceptance of the audio repair 

when compared to alternative approaches. Using a Likert scale the average score 

across all listening tests gave an acceptance score of 7.09/10 with the maximum score 

of 8.44/10 achieved when the longest dropout and subsequent repair was presented. 

A rank of preferred ’repairs’ showed that acceptable repairs can be of a low match 

depending on the content of the audio. Combining the audio spectrum envelope 

features with k-means clustering enables similar audio frames to be classified. The 

MPEG–7 audio spectrum envelope representation enables pertinent data to be 

retained whilst reducing the overall data being analysed to a minimum. Clustering 

the audio into similarly identified groups enables large sections of audio to be 



analysed and compared. Integrating categorical measurement of distance to 

determine a best possible match in previous sections within an audio file as similar 

enables automatic swapping between live audio streams and previously received 

portions of the audio stored locally in a time dependent manner. Forward Error 

Correction (FEC) can be performed using previously received audio broadcast across 

bursty networks without adversely increasing bandwidth, unlike other approaches 

that attempt to repair network dropouts using ’synthesised’ or greatly reduced signal 

quality as replacements. Providing a novel approach to FEC that combines the latest 

metadata representation with a classical clustering and string matching technique 

in an attempt to minimise large dropouts in an audio broadcast on wireless bursty 

networks.  

Most of the related work within the field of MIR uses one of the following forms of 

signal representation: singular value decomposition, principal component analysis, 

pitch/frequency detection. However, SoFI utilises as much of the original signal in a 

condensed form through the MPEG–7 audio spectrum envelope. By retaining the 

important content across the spectrum a more informed comparison is made. String 

matching and clustering within the field of pattern identification and matching is 

shown to be a reliable and accepted approach. Within the field of MIR systems, 

similarity classifiers need a sensor that gathers the observations, a feature extraction 

mechanism that computes numeric or symbolic information from the observations 

and a classification scheme that performs the actual classifying. SoFI conforms to 

these steps through the use of the ASE representation as the sensor, the clustering 

into groups as a symbolic representation and by performing string matching 

comparisons classifies the measures of similarity for each frame. A union between 

the similarity MIR approach to identifying similar sections and packet loss with 

network critical level identification when dropouts occur provides a unique approach 

to a problem that has until now only been approached on a packet level. Audio is 

dynamically changed based on the characteristics of network flow but listeners are 

provided with a ’best possible’ alternative with the aim to minimising disruption. 

SoFI however, does not use compression, but through implementation of swapping 

between sources implements a minimal jitter effect at the start and end time-points 

of the swap. This jitter effect is an associated problem within audio playback. 

However, we have shown how SoFI can be used to reduce potentially large dropouts 

down to smaller and less noticeable effects. Depending on how accurate a replacement 

is, and whether either the start or end segments contain lyrics jitter can be more 

apparent. However, through the subjective testing of SoFI, a comparison with 

approaches that use this effect it can be seen that SoFI produces a much more 

acceptable level even under poor match conditions.  With the shift to IP based 

streaming across different networks or platforms, the ability to meet audience 

expectations on quality of service and deliver content continuously will be a key 

requirement. The bursty nature of IP networks along with variations of performance 

due to contention will always play against delivering a high quality of service for 

streamed content to the destination. Any solution that improves the audience 

experience must add to the overall development of streaming audio over IP as the 

future of radio.   It is in this arena that SOFI has the potential to improve the service 

to the listener and thus become commercially valuable. 
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