Wireless Handheld Devices Become Trusted Network Devices

Wireless Handheld Devices Become Trusted Network Devices
Paul Canning
BEng Electronics and Computer Systems

University of Ulster
Magee Campus
Faculty of Engineering

Canning-p1@ulster.ac.uk

Supervisor

Kevin Curran

kj.curran@ulster.ac.uk

Abstract

In the world of IT, a security model is only as secure as its weakest link. There are several layers of security and different measures that can currently be implemented, however, they lack coordination and therefore potential security breaches might compromise the network.

With wireless access becoming the norm, and users requiring “on the move communication” even within a campus, networks are expanding past the traditional wired networks by adding wireless access points (AP’s). This gives the customers the flexibility they require, but leaves a net threat vector to the network. There have been various encryption and security steps taken to validate the communication and authentication of the devices and end users connecting.

This project addresses the critical problem of secure authentication using the 802.1x standard which will be implemented using Microsoft’s Radius server elements. It will involve the enrolment of secure certificates on Windows mobile devices thus securing mobile devices from physical attacks.
To ensure that all steps are adhered to, that all the necessary applications have been installed, and to handle web service communication, an application will be created which will provide an automated solution.
Acknowledgements

Firstly I would like to thank Dr Kevin Curran for the help and advice offered, and having faith in my abilities to pursue this project, and Kevin, I have almost mastered the Table of Contents.

I would also like to thank various members of the library staff for their advice and assistance during the beginning of my research phase. The help and guidance offered was of great benefit.

Thanks must be given to my family and friends for their support in making my studies as pleasurable and relaxed as possible. With an extra special thank you to Rachael Holland, my spell checker and the one to help me keep my attention focused on the problems at hand.

Declaration

“I hereby declare that for a period of two years following the date on which the dissertation is deposited in the Library of the University of Ulster, the dissertation shall remain confidential with access or copying prohibited.

Following the expiry of this period I permit the Librarian of the University of Ulster to allow the dissertation to be copied in whole or in part without reference to me on the understanding that such authority applies to the provision of single copies made for study purposes or for inclusion within the stock of another library. This restriction does not apply to the copying or publication of the title and abstract of the dissertation. IT IS A CONDITION OF USE OF THIS DISSERTATION THAT ANYONE WHO CONSULTS IT MUST RECOGNISE THAT THE COPYRIGHT RESTS WITH THE AUTHOR AND THAT NO QUOTATION FROM THE DISSERATION CAN NO INFORMATION DERIVED FROM IT MAY BE PUBLISHED UNLESS THE SOURCE IS PROPERLY ACKNOWLEDGED.”

Paul Canning

Table of Contents

iiAbstract

iiiAcknowledgements

ivDeclaration

1Chapter 1 Introduction

11.1
Purpose and Scope

11.2
Background and Objectives

21.3
Outline of Report

4Chapter 2 Wireless Security

52.1 Wireless Networks

72.2 Wired Equivalent Privacy (WEP)

92.3 802.11i, WPA, TKIP and AES

112.4 802.1x and Other New Security Technologies

122.5 VPN for Wireless Networks

14Chapter 3 Web Services and Devices

143.1 Web Services

143.1.1 What is a Web Service?

153.1.2 What kind of services can Web Services provide?

153.2 The Role of SOAP

163.3 What is Web Service Description Language?

173.4 Mobile Devices

173.5 Personal Digital Assistant

183.6 Smart Phone

19Chapter 4 Server Elements

194.1 Server Side

194.1.1 Active Directory

204.1.2 Web Server

204.1.3 Certification Authority

214.1.4 Radius Server

224.1.5 DHCP Server

234.1.6 DNS Server

24Chapter 5 Problem Specification & Initial Requirements

245.1 Problem Specification

245.2 Scope and Limitations

255.3 Initial Requirements Analysis & Proposed Implementation

255.4 Power On Password

275.5 .Net Web Service and Client to Authenticate User and Enrol Certificate

275.6 Automated Build application

285.7 Initial Requirements

285.7.1 Hardware

285.7.2 Development Tools

285.7.3 Operating Systems, Elements and Software

29Chapter 6 Initial Design

316.1 User Authentication

326.2 Certificate Installation

336.3 Power on Password/PIN

356.4 PDA Client – Certificate Enroller

356.5 Web Services

366.6 Access Point

366.7 Wrapper & Automated Build

38Chapter 7 Implementation – PDA Applications & Web Services

387.1 Over View of Public Key Cryptographic Standards

407.2 PDA Client – Certificate Enroller

447.3 Power on Password/PIN

497.4 PDA Web Service

507.5 Certificate Request Soap Service

51Chapter 8 Implementation – Server

518.1 Active Directory – Domain Controller

518.1.1 AD Setup

528.1.2 User Setup

568.2 Web Server – ISS

568.3 Certificate Authority

568.3.1 Installation

578.3.2 Setup

628.4 RADIUS Server – IAS

698.5 DHCP Server & Syslog

698.5.1 DHCP Server

708.5.2 Syslog

708.6 DNS Server

71Chapter 9 Implementation – Access Point

729.1 Network Interfaces

739.2 Security

76Chapter 10 Implementation – Wrapper and Automated Build

7610.1 Automated Build

7610.1.1 Setting the Time and Time Zone

7610.1.2 Root Certificate Installation

7810.1.3 Connection Settings

7810.1.4 Remote Display

7910.1.5 File Copy and Application Installation

8010.1.6 Completion

8010.2 Wrapper

8110.2.1 Script Creation

8210.2.2 Licence Enforcement

8310.2.3 Destination Folder

8410.2.4 Installation Closing Options

85Chapter 11 Testing – Server and Access Point

8511.1 Server

8511.1.1 Active Directory

8511.1.2 Certificate Authority

8511.1.3 Web Server

8611.1.4 DHCP Server

8711.2 RADIUS Server & Access Point

88Chapter 12 Testing – PDA Applications & Web Services

8812.1 Power On Password

9012.2 PDA Client Enroller

9112.3 CertRequestSoapSrv & PDAWebService

93Chapter 13 Testing – Automated Build, Wrapper & Overall

9313.1 Automated Build

9413.2 Wrapper

9413.3 Overall Testing

96Chapter 14 Evaluation, Future Work & Conclusion

9614.1 Evaluation

9614.1.1 Power on Password

9614.1.2 PDA Client Enroller

9714.1.3 Over all Project

9714.2 Future Work

9714.2.1 Infrastructure and Transport

9914.2.2 Power on Password

10014.2.3 PDA Client Enroller

10014.2.4 Automated Build Process

10114.3 Conclusion

IAppendix A – List of References

VAppendix B – Abbreviations

VIIAppendix C – WEP Encryption Process

VIIIAppendix D – Access Point – Configuration

XAppendix E – Power On Password/PIN – Code

XCtrlpnl.cpp

XVIIPassword.cpp

XXIIPasswordDlg.cpp

XXVPasswordDlgMsg1.cpp

XXVIPasswordLogin.cpp

XXVIISTPasswordManager.cpp

XXXVAppendix F – PDA Client Enroller – Code

XXXVCertInstall.cs

XLIIInstall.cs

XLIXLookupPrivateKey.cs

LIRegistry.cs

LXIIISystemReset.cs

LXIVWriteLog.cs

LXVIAppendix G – CertRequestSoapSrv – Code

LXVICertRequestService.asmx.cs

LXXAppendix H – PDAWebService – Code

LXXService1.asmx.cs

LXXIIIRandomPassword.cs

LXXIXAppendix I – Automated Build

LXXIXAutomated Build – Code

LXXIXUniversity of Ulster – Secure PDA.nsi

LXXXIIIInstall.vbs

LXXXVcmxl.pl - Perl Script

LXXXVIIAutomated Build – User Documentation

LXXXVIIReadMe.Doc

CLicence.txt

CIIAppendix J – Power on Password Test Results

CIIProduct Requirements

CIITest Cases & Results

CIVFinal Notes

Table of Figures
18Figure 3‑1 HTC BlueAngel

29Figure 6‑1 Evolutionary Model

30Figure 6‑2 Waterfall Method

31Figure 6‑3 Initial Design

32Figure 6‑4 Certificate Installation

34Figure 6‑5 Password/PIN Guidelines

38Figure 7‑1 Used PKCS Standards (Ref: Wikipedia, 2005)

39Figure 7‑2 Typical PKCS#10 Request

40Figure 7‑3 PDA Client Enroller Details Prompt

41Figure 7‑4 PDA Client Enroller – User Information Screen

42Figure 7‑5 PDA Client Enroller - Installation Details Completed

43Figure 7‑6 PDA Client - Details Screen

45Figure 7‑7 POP Entry Screen

46Figure 7‑8 POP Rule Error

47Figure 7‑9 POP Cool Off Period

48Figure 7‑10 POP Hard Reset

49Figure 7‑11 POP PIN Change Dialogue

51Figure 8‑1 AD UUMagee Domain Properties

52Figure 8‑2 User Properties General

53Figure 8‑3 User Properties Account

54Figure 8‑4 User Properties Group Memberships

55Figure 8‑5 User Properties Dial-in

56Figure 8‑6 CA Installation Type

57Figure 8‑7 Properties of New Template

58Figure 8‑8 Subject of New Template

59Figure 8‑9 PDAClientAuth Properties Security

60Figure 8‑10 Certificate Template Addition

61Figure 8‑11 pki Properties Security

63Figure 8‑12 RADIUS Client Properties

63Figure 8‑13 RADIUS Clients

64Figure 8‑14 PDA Policy Settings

65Figure 8‑15 PDA Policy Authentication

66Figure 8‑16 PDA Policy EAP Providers

66Figure 8‑17 Smart Card / Certificate Settings

67Figure 8‑18 RADIUS Remote Access Policies

68Figure 8‑19 PDA Request Policy Settings

68Figure 8‑20 Connection Request Polices

69Figure 8‑21 TFTPD32 DHCP Server

70Figure 8‑22 TFTPD32 Syslog Server

71Figure 9‑1 Cisco Web Based Interface

72Figure 9‑2 Access Point IP Configuration

73Figure 9‑3 Access Point Security - SSID Manager

74Figure 9‑4 Access Point Security - Encryption Manager

75Figure 9‑5 Access Point Security - Security Management

78Figure 10‑1 Remote Display

79Figure 10‑2 Installation Message

80Figure 10‑3 User Interaction Screen - POP.

80Figure 10‑4 User Interaction Screen - Certificate

81Figure 10‑5 Nullsoft Scriptable Install System

82Figure 10‑6 HM NIS Edit

82Figure 10‑7 Wrapper - Licence Agreement

83Figure 10‑8 Wrapper - Install Location

84Figure 10‑9 Wrapper - Finish Screen

86Figure 11‑1 Web Service Successful Connection

87Figure 11‑2 Access Point Verification as RADIUS Client

89Figure 12‑1 POP Registry Hack

92Figure 12‑2 Web Service Testing - Request

92Figure 12‑3 Web Service Testing - Reply

95Figure 13‑1 Successful Connection

VIIFigure E‑1 WEP Encipherment

Chapter 1 Introduction

1.1 Purpose and Scope

This report lends itself to the ever-changing world of network communication, and within this project, mainly on wireless network communication and security. This project aims to take from start to finish, the enrolment of a certificate securely on a Windows mobile device and, also to secure the device from physical attacks.

1.2 Background and Objectives

In the world of IT, a security model is only as secure as its weakest link. There are several layers of security and different measures that can currently be implemented, however, they lack coordination and therefore potential security breaches might compromise the network. New security threats continue to emerge that compromise weaknesses in individual security components. In order to counteract that threat an integrated solution using the most robust security measures is required to protect a network from potential attacks.

Before the introduction of wireless communication, users had to find an Ethernet port to jack into to perform network communication. This meant that an abundance of points had to be set up in various locations for roaming customers to use, but this still limited the flexibility of the users as they were still tethered to the Ethernet port. Wireless technologies remove the need to be tied down to a limited location and, the availability of these technologies has resulted in significant customer demand for their implementation.

With wireless access becoming the norm, and users requiring “on the move communication” even within a campus, networks are expanding past the traditional wired networks by adding wireless access points (AP’s). This gives the customers the flexibility they require, but leaves a net threat vector to the network.

There have been various encryption and security steps taken to validate the communication and authentication of the devices and end users connecting - these are discussed later in Chapter 2. This project addresses the critical problem of secure authentication using the 802.1x standard which will be implemented using Microsoft’s Radius server elements. This will involve utilising the latest technology to secure the current weakest section of network security, which will become apparent.

1.3 Outline of Report

Chapter 2 provides an introduction to the relevant literature on wireless networking, looking at the history, development and weaknesses that have become apparent.

Chapter 3 gives information on what a web service is and how it operates. In this chapter a definition of mobile devices is also supplied.

Chapter 4 takes a look at the server requirements that are needed for the project, enabling the web service and certificate authority to operate correctly. For these to behave correctly the inclusion of Active Directory and a Web Server are the basic requirements.

Chapter 5 details the problem and scope covered by the project. Following this it then lists the requirements, both hardware and software related.
Chapter 6 takes a look at how the design will communicate with the different sections, and also the design for each of the elements required for the overall project.

Chapter 7 describes how the PDA Client Enroller, Power On Password/PIN
 applications and the web services were implemented.
Chapter 8 explains how the implementation of each server element was performed.
Chapter 9 gives a full detailed description of how the access point was configured to enable all required communications.
Chapter 10 details how the automated build process was developed and also how the final wrapper, that is distributed to the end users, was created.
Chapter 11 lists the tests that were carried out to verify that the server was functioning correctly.
Chapter 12 shows the tests used to show that the web services operated correctly.
Chapter 13 describes the tests that were carried out on the elements of the Automated Build and the wrapper. It was shows how the testing of the overall project was implemented.
Chapter 14 has future work that should be carried out and some closing words and thoughts on the project.
Chapter 2 Wireless Security

“The existence of the computer network and the internet is relatively new, but the idea of networks is centuries old. To get information quick from one place to another has always been a vital element in commerce, warfare and sciences. And thus complete networks of routes, towers and the like were setup. How complicated these were depended on the general wealth of a certain empire or company. For centuries, communication was executed by couriers, runners, semaphores
, smoke signals and other means of sending messages over large distances.” (Crobart, 2000)

At present, Businesses, Academic centres, Enterprises and even homes across the globe now have computer networks at their cores. These networks improve both working practices and the standard of living. With the addition of wireless communications into these networks the wired “tether” that kept a hold of the users is released, giving customers and end users the freedom to move freely while still having an open and active connection to their networks.

This however does come at a cost. The AP’s broadcast out, leaving a footprint that an unscrupulous person could use to try and gain access to a network. Therefore steps have to be taken to protect against attacks of this sort.

2.1 Wireless Networks

“802.11 is a group of specifications developed by the IEEE for WLAN’s. These specifications define an over-the-air interface between a wireless client and an access point, or between two or more wireless clients.” (Intel Corp, 2004)

“Wi-Fi is short for wireless fidelity and is meant to be used generically when referring of any type of 802.11 network, whether 802.11b, 802.11a, dual-band, etc. The term is promulgated by the Wi-Fi Alliance.” (Webpedia, 2004)

Wi-Fi sprang into existence as the result of a decision in 1985 by the FCC (Federal Communications Commission) to open several bands of the wireless spectrum for use without a government license. These bands were already allocated to equipment such as microwave ovens that use radio waves to heat food.
“To operate in these bands though, devices would be required to use "spread spectrum" technology. This technology spreads a radio signal out over a wide range of frequencies making the signal less susceptible to interference and difficult to intercept.” (Intel Corp, 2004)3
In 1990, a new IEEE committee called 802.11 was set up to look into getting a standard started. It wasn't until 1997 that this new standard was published.
Two variants were ratified over the next two years — 802.11b which operates in the Industry, Medical and Scientific (ISM) band of 2.4 GHz and 802.11a which operates in the Unlicensed National Information Infrastructure bands of 5.3 GHz and 5.8 GHz.
The popularity of Wi-Fi really took off when the growth of high-speed internet access became affordable for home users. It was and remains the easiest way to share a broadband link between several computers spread throughout a home. The growth of hotspots and both free and fee-based public access points have also added to Wi-Fi popularity.
The latest ratified variant of the 802.11 standard was 802.11g. This Wi-Fi technology, like 802.11a, uses a more advanced form of modulation called OFDM (Orthogonal Frequency Division Multiplexing), but enables it to be used in the 2.4 GHz band. The large attraction to 802.11g is the ability of a data rate of up to 54 Mbps to be achieved.
	IEEE WLAN Standard
	Over-the-Air (OTA) Estimates
	Media Access Control Layer, Service Access Point (MAC SAP) Estimates

	802.11b
	11 Mbps
	5 Mbps

	802.11g
	54 Mbps
	25 Mbps (when .11b is not present)

	802.11a
	54 Mbps
	25 Mbps

	802.11n
	200+ Mbps
	100 Mbps

Table 1: Comparison of different 802.11 transfer rates. (Source: Intel Labs)

Looking towards the future, there is currently a proposed addition to the 802.11 standard; this is 802.11n this has not been ratified as of yet and should be ratified early next year. This standard will increase the data rates to 300 Mbps. Other necessary improvements include range at given throughputs, robustness to interference, and an improved and more uniform service within the coverage of an access point. Wider bandwidth channels and multiple antenna configurations could lead to data rates of 500 Mbps
, with further plans to ratify other standards with Terabit level throughput.
2.2 Wired Equivalent Privacy (WEP)

“WEP is an optional 802.11 function that offers frame transmission privacy similar to that of a wired network. WEP generates secret shared encryption keys that both source and destination stations can use to alter frame bits to avoid disclosure to eavesdroppers.” (Russell, Dean and Vines, 2002. Wireless Security Essentials. Wiley)

“If the connected network utilises WEP, the NIC encrypts the payload of each 802.11 frame before transmission using the RC4 stream cipher developed by RSA Security
. The receiving station, such as an access point or another radio NIC, performs decryption upon arrival of the frame. As a result, 802.11 WEP only encrypts data between 802.11 stations. Once the frame enters the wired side of the network, such as between access points, WEP no longer applies.” (J Geier, Wi-Fi Planet, 2002.)

WEP has a number of flaws in its design that make it relatively easy to attack and is no longer considered to provide any significant degree of security. First to appear was a problem with Key Management. WEP uses a symmetric key encryption method; this means that the same shared key is used for both encryption and decryption. The key must be shared between the sender and the receiver. One of the problems is that the original 802.11 protocol does not address the issue of key management. So, the question is raised, “How is the key distributed among users?” This may not seem like a problem for a home user using WEP in their environment where perhaps 3 devices are connected, but what happens if it is used in an enterprise with thousands of wireless systems?

Each device must know the key and keep it a secret. However, what if a laptop is stolen? A new key must be given to every single device, but apart from this, if an attacker is able to compromise a key from one session, that key can then be used to decrypt any other session because everybody is using the same key.
Following this management problem other issues started to be discovered, these include IV
 collisions, Message Injection and Authentication Spoofing. IV collisions and Message Injection both take advantage of the weakness where the IV can be reused.

“Following these, investigations were started to see what other vulnerabilities WEP had to offer. A paper titled “Weaknesses in the Key Scheduling Algorithm of RC4”, by Fluhrer, Mantin and Shamir, identified certain IVs that leak information about the secret key. In fact, there are large classes of these weak keys. If you can sample enough cipher text that is derived from them, you can determine the secret key with relatively little work. This is based on an assumption that the attacker knows the first few bytes of plain text. Due to RFC 1042, all IP and ARP packets always start with 0xAA. Therefore the first few bytes are known. With this knowledge, programs such as Air Snort and WEP Crack where designed to sample traffic and crack WEP keys.” (Fluhrer, Mantin and Shamir, 2001. Weaknesses in the Key Scheduling Algorithm of RC4.)

This encryption method even though widely in use today, is really just a token attempt at securing the network on its own. As a result it is only used in most enterprises along with a VPN client.

These weaknesses have lead to some new activities, such as War Driving
.

2.3 802.11i, WPA, TKIP and AES

“In November 2002, the Wi-Fi Alliance announced the WPA security standard. It is intended to replace the WEP standard offered now.” (Wi-Fi Alliance, 2002. “Overview – Wi-Fi Protected Access”)

Clearly, due to its shortcomings, WEP is limited in its usefulness in the Enterprise. The Wi-Fi Alliance announced WPA in 2002, this however was a compromise solution as it used parts of the 802.11i specification that were ready and ignored the sections that were not. This decision was taken because of the already known weaknesses of WEP and the requirement that something be made available to patch the insecurities until the full specification was ratified. The problems that were highlighted about WEP in the previous section have been solved by WPA using TKIP and 802.1x.

TKIP addresses the encryption issues:

· Replay attacks: IV’s can be used out of order.

· Key collision attacks: IC collisions.

· Weak key attacks: WEP implementation of RC4 stream cipher is vulnerable to FMS attacks.
802.1x addresses the access control issues:

· Lack of key management.

· No support for enhanced authentication methods such as tokens, certificates, etc.

· No user identification and authentication.

· No centralised authentication or authorisation.

TKIP is used by WPA; it is a toughened encryption scheme based on that used in WEP. TKIP uses key hashing and non linear message integrity check. TKIP also uses a rapid re-keying protocol that changes the encryption at about every ten thousandth packet. However, TKIP still does not remove all of the fundamental flaws in Wi-Fi security.

WPA will work in two different modes. Firstly, for the home and SOHO users who do not have an authentication server, it will work in Pre Shared Key (PSK) mode. Users simply enter a key to gain access to the network.

“The other alternative is to use a managed mode; it will work with an authentication server compatible with the 802.1x and Extensible Authentication Protocol (EAP) standards. 802.1x and EAP enable a client network adapter to negotiate via an AP with a back-end authentication server using securely encrypted transactions to exchange session keys.” (Ohrtman and Roeder, 2003. Wi-Fi Handbook: Building 802.11b Wireless Networks, McGraw-Hill Networking)
As has been previously mentioned WPA uses many parts of 802.11i, but it is missing one key element, Advanced Encryption Standard (AES). AES replaces the RC4 based encryption algorithm in 802.11i
 which was ratified in June 2004. The migration to AES encryption will require hardware changes since AES is computationally more complex than RC4. Devices that support the full standard are labelled as Wi-Fi WPA2 certified.

WPA2, as with WPA, is broken down into two implementations; one for the home and SOHO user, and one for the Enterprise, again using the same breakdown as before - a PSK for the home users and server authentication for the Enterprise.

2.4 802.1x and Other New Security Technologies

“With the burgeoning success and adoption of Wi-Fi networks, many other security technologies have been developed and continue to be developed. Security is a constant challenge, and there are thousands of companies developing a cornucopia of solutions.
There are a variety of proprietary third-party security solutions that effectively "ride on top of" a standard Wi-Fi transmission and provide encryption, firewall and authentication services. Many Wi-Fi manufacturers have also developed proprietary encryption technologies that greatly enhance basic Wi-Fi security.” (Wi-Fi Alliance, 2004. Wi-Fi Security at work and on the road)

Encryption techniques use special technologies to scramble transmissions at one end and then unscramble them at the other. Other techniques use special keys or codes that enable the computers to talk to each other - the sender's computer transmits a key or code to the receiving computer, and if the keys match, the sender is allowed into the system.

“The Wi-Fi Alliance, the IEEE 802.11 standards committee and many Wi-Fi members are working to develop new security standards such as 802.11i and 802.1x. These new security standards will use advanced encryption technologies such as AES and TKIP, as well as secure key-distribution methods.” (Intel Corp, Jesse Walker, 2005)

Hackers can break encryption codes by intercepting and analyzing large amounts of data, but breaking codes takes time. By automatically "changing" the encryption keys every five minutes or so, the Wi-Fi network is already using a new code by the time a hacker has managed to intercept and crack the old one. Most enterprise-level Wi-Fi networks already enable IT managers to change the codes manually, but 802.1x allows for management of authentication keys and/or processes, e.g. certificates, Active Directory account, smart cards, etc.

2.5 VPN for Wireless Networks

As the scope of this project is to connect devices securely while they are within the controlled network, detail on VPN networks will be spared. However, it must be realised that this is the current model for all secure remote access connections.

“A VPN, or Virtual Private Network, is a cryptosystem that allows you to secure your data as it travels over an insecure network such as the Internet. While this may sound similar to the SSH cryptosystem, VPN's have a different purpose. SSH was designed to allow a user to login securely to and remotely administer another computer. A VPN is designed to allow a user to access transparently the resources of a network. As far as the user is concerned, they will be able to do anything they normally would be able to do, even when they is away from the network. Because of this, VPN’s are popular with telecommuters and with offices that need to share resources over physically separate locations.” (Librenix, 2003. “VPN and IPSec explained”)

VPN has no standard model but in general it uses public Internet lines in one of several unique fashions to create the virtual private network. The following are a few of the VPN security types available:

Encrypted tunnelling: utilizes SSL (Secure Socket Layer) encryption to authenticate users and send information between the remote client(s) and server(s).

IP Security (IPsec): encrypts IP packets like SSL, but can also encrypt UDP (user datagram protocol) traffic, one layer deeper in the network model. UDP traffic accounts for only a small percentage of network traffic but is used in some key applications like streaming media, and Voice over IP (VoIP).

Point-to-point Protocol (PTPP): Microsoft’s VPN protocol, not considered as secure as some others including IPsec.
Chapter 3 Web Services and Devices

3.1 Web Services

“Web services are the fundamental building blocks in the move to distributed computing on the Internet. Open standards and the focus on communication and collaboration among people and applications have created an environment where XML Web services are becoming the platform for application integration. Applications are constructed using multiple XML Web services from various sources that work together regardless of where they reside or how they were implemented.” (Microsoft MSDN, 2005)

The above description from Microsoft then further breaks down the definition of a web service into the following:
3.1.1 What is a Web Service?

· Web services are small units of code

· Web services are designed to handle a limited set of tasks

· Web services use XML based communicating protocols

· Web services are independent of operating systems

· Web services are independent of programming languages

· Web services connect people, systems and devices

A web service can be thought of as just a component, or a black box, that provides some useful facilities to clients or consumers. Unlike web applications which traditionally have a user interface, web services expose callable API functions, better known as web methods, over the internet or network. It is not designed to serve the end user as traditional web applications do, but to provide the server with other applications, be they web applications, GUI applications or even command line applications.

3.1.2 What kind of services can Web Services provide?

That is up to the designer - a Web Service has the flexibility to provide real time stock quotes, validate credit cards or as required here, issue security certificates. Just as the traditional web application, web services are as diverse as their creator’s imaginations and needs.

Web servers are not a propriety technology, they are an industry standard built on open protocols such as HTTP and the Simple Object Access Protocol (SOAP).

3.2 The Role of SOAP

SOAP is the protocol used by consumers for sending requests to, and also receiving responses from XML web services.

“SOAP is a lightweight protocol built on top of HTTP. It is possible to exchange SOAP messages over other protocols but currently, only the HTTP binding for SOAP have been defined. It defines an XML grammar for specifying the names of methods that a consumer wants to invoke on a web service, for defining parameters and return values, and for describing the types of parameters and return values. When a client calls an XML web service, it must specify the method and parameters by using this XML grammar.” (John Sharp and Jon Jagger, 2003. Visual C# .NET Microsoft Press)

The function of SOAP is to improve cross-platform interoperability. The strength of SOAP is its simplicity and also the fact that it is based on other tried and tested industry standard technologies, HTTP and XML.

SOAP specification defines a number of things; the most important are the following:

· The format of a SOAP message

· How data should be encoded

· How to send messages (the method calls)

· How to receive responses

Take for example, an XML web service called WebService.asmx
, which exposes methods for accessing the products in a table for a company database. You could then use a method called HowMuchIsIt that allows a client to supply the name of a product and the number of items required. The method then queries the price element of the database to calculate the total cost of buying the required number of products.

3.3 What is Web Service Description Language?

The body of any SOAP message is XML. The web server expects the client to use a particular set of tags for encoding the parameters for the method. A client can submit a request to a web service with the query string wsdl (e.g. .../WebService.asmx?wsdl) appended to it. The web service will then reply with what is known as the Web Service Description. The schema that this uses is called Web Services Description Language (WSDL). The description provides enough information to allow a client to construct a SOAP request in a format that the web server should understand. The returned data can then be parsed for the web service in a mechanical manner, which can then use it to create a proxy object that a client can use to convert method calls into SOAP requests.

3.4 Mobile Devices

With various technological advancements it has become possible for the development of handheld devices with the processing power that would match a high end computer from only ten years ago. Advancement in battery technology has also lead to these devices to be in use for long periods of time without having to be charged, even with a radio device on the system.

There are various forms of mobile devices in use everyday. For the purpose of this project a PDA with Microsoft Pocket PC 2003 as its Operating System will be the focus. This however is not the limit of devices that can be used. Others items include PDA watches, Smart Phones, interactive remote controls (resembling a small tablet PC) to name but a few.

3.5 Personal Digital Assistant

PDA’s are now a common item to be seen in use everywhere from restaurants (replacing the pencil and notebook for taking and sending orders), to busses (replacing books, newspapers and/or MP3 players).

The strengths of the PDA include its flexibility and its potential for expansion. Most of the current devices come with various connectivity methods. These include Wi-Fi, Bluetooth, Infrared and USB. With these connectivity options it can be used to synchronise mail, browse the web and store files, just to name a few.
3.6 Smart Phone

With the popularity of the mobile phone, more and more companies started to compete for a share in the market. As well as competing with each other to ensure the customers purchased their devices, manufacturers were not only looking for ways to cut the price of their devices to make them more attractive, but also how to add new and improved features that would appeal to customers.
This has lead to what could be looked upon as the natural progression of the phone or a hybrid of two technologies, Smart Phones. These devices have the functionality of both a phone and a PDA.
[image: image1.png]
Figure 3‑1 HTC BlueAngel

Perhaps the most common of these devices that is currently available would be a device made by HTC, the company that creates devices which are re-badged as O2’s XDA series. Above is an image of the O2 XDA II (Figure 3‑1).
Chapter 4 Server Elements

4.1 Server Side

For the implementation of this project, a server will be required to host various portions. Current offerings of servers that could be used to implement the design include, but are not limited to, a flavour of Linux or UNIX or Windows Server. A combination of these could be implemented successfully to build the integrated system.

After reviewing the options, it would have been preferable to build a Linux server, but with this students experience in setting up and using Windows Server 2003 and using (Active Directory) AD, the way to proceed was to build a Windows Server 2003 host as it can be used to implement all of the required hosting requirements.
From research that has already been covered, certain server side elements will be required for this project to be a success. They are as follows:

4.1.1 Active Directory

“Active directory has been around since the release of Windows 2000 several years ago, and is now a standard sight in many offices. Its inclusion marked a radical change at the heart of the Windows Server platform, one that people are still adjusting to today.” (Windows Networking, 2003)

The author here goes on to describe AD as the central component of the Windows platform, the directory service provides the means to manage the identities and relationships that make up network environments. Windows Server 2003 makes AD simpler to manage, easing migration and deployment. The AD is an implementation of LDAP (Lightweight Directory Access Protocol), by Microsoft for use in the Windows environment. AD gives administrators the ability to appoint policies, deploy applications and application updates, over an organisation, no matter the size. “The AD stores information and settings related to an origination in a central, organised and accessible database.” (Wikipedia, 2005)
 An AD managed network can vary in size from a small implementation, scaling up to encompass the needs of a large enterprise.

4.1.2 Web Server

Windows Server 2003 contains the web server ISS v6.0 (Internet Information Service). IIS is a set of Internet-based services for servers using Microsoft Windows platform. IIS 6.0 is bigger, faster and definitively more secure than IIS V5. It is the second most common web server used today after Apache. (Apache, 2005)
. The choice was made to use this as the Web Server as it is designed specifically to use .Net Web Services as well as hooking into Active Directory directly.

The implementation that has been proposed for use will be the host for the web service that will be communicating with the Radius Server for the deployment of the certificate on the required device.

4.1.3 Certification Authority

“In cryptography, a certificate authority or certification authority (CA) is an entity which issues digital certificates for use by other parties. It is an example of a trusted third party. CA's are characteristic of many public key infrastructure (PKI) schemes.” (Wikipedia, 2005)

In short, the CA is a trustworthy element that issues a security certificate only after you have given positive evidence of identity.

4.1.4 Radius Server

“RADIUS (Remote Authentication Dial In User Service) is an AAA (Authentication, Authorization and Accounting) protocol for applications such as network access or IP mobility. It is intended to work in both local and roaming situations.” (Wikipedia, 2005)

Key features of RADIUS are:
· Client/Server Model: A Network Access Server (NAS) operates as a client of RADIUS. The client is responsible for passing user information to designated RADIUS servers, and then acting on the response which is returned. RADIUS servers are responsible for receiving user connection requests, authenticating the user, and then returning all configuration information necessary for the client to deliver service to the user.

· Network Security: Transactions between the client and RADIUS server are authenticated through the use of a shared secret which is never sent over the network. In addition, any user passwords are sent encrypted between the client and RADIUS server to eliminate the possibility that someone snooping on an unsecured network could determine a user’s password.
· Flexible Authentication Mechanisms: The RADIUS server can support a variety of methods to authenticate a user. When it is provided with the username and original password given by the user, it can support PPP PAP or CHAP, UNIX login, and other authentication mechanisms.

· Extensible Protocol: All transactions are comprised of variable length Attribute-Length-Value 3-tuples. New attribute values can be added without disturbing existing implementations of the protocol.
(NetworkDictionary, 2005)

RADIUS was originally developed by Livingston Enterprises for their PortMaster series of Network Access Servers. Now, several commercial and open-source RADIUS servers exist. In this implementation RADIUS will be used as part of the authentication process, querying the LDAP portion of the AD.
4.1.5 DHCP Server

“Dynamic Host Configuration Protocol (DHCP) is a client/server protocol that automatically provides and Internet Protocol (IP) host with its IP address and other relevant configuration data, such as the subnet mask and default gateway.” (Microsoft, 2006)

The server in this project is under heavy strain with the other elements that are running on it, and the Windows Server 2003 implementation of DHCP server is designed for use within an enterprise environment. This is not required for the implementation that is going to be applied here, and as such, a lightweight solution will be utilised. The version that has been tried and that will be more than sufficient for the project is TFTPD32
. The sys log server element of this application may also be useful for getting communications from the access point, for any debugging or communications tracking.

4.1.6 DNS Server

The Domain Name System (DNS) servers translate domain and computer DNS names to IP Addresses. Within the project there will be a domain created and as such the requirement of the DNS server is a must. This is only a small element, but a necessary one.
Chapter 5 Problem Specification & Initial Requirements

5.1 Problem Specification

Customers require mobile devices such as a PDA or Smart Phone to deliver improved personal productivity and real time access to data and communications at their place of work. This could be a user who is mobile in an office or campus, working on equipment in a factory or tracking in a warehouse.

The data that these users require may be sensitive in nature and as such has to be protected. In this respect, a platform must be created that will secure both the traffic of data to and from the device, and also the data that is stored there.

Apart from the client side security, there must also be a secure method of connectivity implemented; 802.1x architecture will be implemented.

5.2 Scope and Limitations

For a full implementation, the inclusion of a VPN client would be required for communication for remote access. There are various freeware VPN clients but none of these yet support Mobile Devices. Microsoft includes a limited capability VPN client with the professional edition of their Windows Mobile 2003 and Windows Mobile 5 clients.

5.3 Initial Requirements Analysis & Proposed Implementation

The software elements that are required as end products of the project will be:

1. Power On Password (POP) Application for the PDA

2. Web Service to authenticate user and enrol certificate

3. Build Application to secure device

The combination of these three components enables the secure deployment of X.509 certificate credentials to a specific device in a controlled manner. The design protects the certificate\private key combination that is to be used for network access authentication from attack.

5.4 Power On Password

The POP will be an application that will supersede the password application that comes with Pocket PC 2003. This application will have a number of features that differ from the standard password protection.

This is important because the protected cryptographic store on Pocket PC devices is secured using the power on password mechanism. By enforcing such a password we ensure that only a user who knows the devices access password can use the device to connect to the protected network.

Firstly, the standard password is open to brute force attacks. To overcome this with POP, when the user enters the password and the validation fails, they will have a further two opportunities to attempt to enter the correct password. If they fail on the third attempt, the device will soft reset
 and then enforce a wait before giving the user access to re-enter. If they fail at this stage, the device soft resets again, and the wait time will be re-established. Repeating this step and enforcing the wait times will defeat brute force attacks on the password of the device. After five attempts the device will hard reset
, deleting all information on the device including the certificate.

Also, the password strength on the device is weak; a four digit pin is all that it requires. The POP application will however enforce the user to use a more secure password, which could be a strong password (i.e. a combination of numbers, characters and special characters) or a six digit pin that checks for repetition or sequences.

The password application that comes as default can also be deactivated; with the POP application this however will not be possible.

The ability to change the password at any stage will also be included. If the user chooses to change their password, the various validation rules as detailed above will apply.

The POP application will be developed with eMbedded Visual C++ and the SDK for Windows Mobile. The reason for the use of this language above all others is due to the requirement of deploying a CPL file as opposed to a CAB file.

5.5 .Net Web Service and Client to Authenticate User and Enrol Certificate

The .Net Client’s sole purpose is to call the functions in the Web Service and install the certificate when received. All the processing will be carried out by the Web Service. When the Web Service’s functions are called they will query the AD server to check and see if the user exists, and validate if permission to build a device of this sort exists for this user.

If the user is validated, the client will then request a certificate from the web service. The web service will contact the Certificate Authority for a certificate using a PKCS#10 request and receive a PKCS#12 response which will contain the certificate. Once received by the server and sent to the client, the certificate is installed using the Cryptographic API of the PPC Device. A .Net client\web service can be implemented in a variety of languages. Current Microsoft development languages such as Visual C++, Visual C#, Visual J# and Visual Basic .NET are currently available. This will be built using Visual C#.

5.6 Automated Build application

The build application will be used to ensure that all elements that are required are installed and enforced. It will also contain the .Net Client (which will handle all communications with the web service).

This will be developed using a range of technologies including Visual Basic Scripts, batch commands and C scripting.

5.7 Initial Requirements

5.7.1 Hardware

· PDA

Wirelessly Enabled, Secure Store

· Server

· Access Point

802.1x Compatible

5.7.2 Development Tools

· Microsoft Visual Studio 2003

· eMbedded Visual C++ 4.0

· SDK for Windows Mobile 2003

· PERL Scripting Tool

· NSIS – Nullsoft Scriptable Install System

· OpenSSL

· Rapi Config Tools

5.7.3 Operating Systems, Elements and Software
· Microsoft Pocket PC 2003

· Microsoft Server 2003

· Active Directory

· RADIUS

· IIS v6.0

· Certificate Authority

· DNS

· Certificate Manager Tool
· Microsoft ActiveSync

· DHCP Server – TFTPD32
Chapter 6 Initial Design

There are various approaches that may be used to design and develop a solution to the problems that have been set out. There are the traditional models

· Evolutionary
· Waterfall Model

· Formal Systems Development Model

· Prototyping Model

· Rapid Application Development Model

Each of these models has their strengths but for smaller designs the Evolutionary method (Figure 6‑1) could well be the fastest way to implement a solution. Evolutionary is to simply create a solution, test it, and fix issues and repeat.

[image: image2]
Figure 6‑1 Evolutionary Model

However as the complexity that is required for a solution rises, this approach will be a viable approach and a more complex design method to design a model for the final solution.

The Waterfall model is the next step up on the complexity ladder which is commonly used. This model is shown in Figure 6‑2. It starts with the requirements, and then the design is developed, if there are any short comings a return to the requirement gathering stage is required. If successful it proceeds to the implementation and testing stage, if failed, as before, it returns to the previous stage, or if successful, proceeds, to the next. These steps remain true right through the implementation of the design.

[image: image3]
Figure 6‑2 Waterfall Method

The other models that can be utilised differ in complexity and design. Rapid Application Development model is suited to multiple teams working on the same project; this is generally used for information systems applications. Prototyping is a working model that is functionally equivalent to a component of the product.
The two methods that have primarily been used are the Evolutionary and Waterfall methods as the designer has a greater familiarity with these concepts and the design requirements do not call for the usage of any of the others models.
6.1 User Authentication

· Launch the Build installer.

· Validate that ActiveSync is running and run.

· Launch the .Net Client

· Validate the user in AD via web service.

· Web service checks user has permissions to build device

[image: image4.jpg]
Figure 6‑3 Initial Design

6.2 Certificate Installation

· Request sent to web service for a user authentication certificate.

· Web service confirms the validity of the request and if it is accepted it passes the request to the CA which returns the certificate.

· Certificate is returned by the Web Service to the .Net Client (which contains the Certificate enrolment functions) on the PDA and installed

· Secure Password settings enforced on the device

[image: image5.png]
Figure 6‑4 Certificate Installation
6.3 Power on Password/PIN
This security element of the overall design is to stop unwanted users from being able to access the sensitive data that could be stored on the device, and to also stop these users from gaining access to the network through having possession of the device.

In the world of large enterprise the cost of loosing a laptop or a PDA is negligible to the cost of competition or other parties from gaining access to the information on these devices. As such, one of the design concepts for this application is for the clearance of all data stored on the device after five failed login attempts. This may be a nuisance to the user, but from the perspective of the enterprise it is a requirement. The user will be given three chances; if they fail on these three attempts they will have a 30 minute cool off period, after which they are given a fourth chance. If the fourth attempt fails, they will be given another 30 minute cooling off period. They then have a final attempt. If they fail at this stage, the device will hard reset itself, wiping all data that is stored on the device.
Another item for consideration is that users generally prefer to have access to “everything” immediately. As such, users will have a tendency to turn off security features that they feel are slowing them down. It is important to ensure that there is no way for the users to turn off or uninstall this application.
PDA’s go into a sleep mode if they have not been used for a while, similar to hibernate on a PC, so if a device is left unattended the next user should be prompted to enter the password to gain access to the device.

After a soft reset, the user should be prompted for the Password/PIN.

Password/PIN rule guidelines must be adhered to (for information please check Figure 6‑5).
User must be able to change the Password or PIN at any time while still adhering to the guidelines.

	Password
	PIN

	Must be at least 8 and less than 15 characters
	PIN must be 6 numbers long

	Must not begin with an exclamation point or a question mark
	PIN must not contain spaces

	Must not contain spaces
	PIN must contain only numbers

	Must contain only letters, numerals, and some special characters
	First 3 numbers must not be the same

	First three characters cannot be the same
	First 3 numbers must not be sequential

	Must contain at least one alphabetical, at least one numeric and at least one special character.
	First 3 numbers must not be reverse sequence

	Must not be the same as one of the previous 8 passwords
	You cannot reuse last PIN

Figure 6‑5 Password/PIN Guidelines
6.4 PDA Client – Certificate Enroller

The primary role for this application will be to request and receive a certificate for the user and install the certificate within the secure store of the device.
To fulfil these roles, firstly the Enroller must take the users credentials and authenticate the user against the Active Directory.
Once this has been successful, the Enroller sends a PKCS#10 request to the Certificate Request web service as a SOAP package.

When the Enroller receives the PKCS#12 response from the web service, it must then install the certificate within the secure store on the device.
6.5 Web Services
The web services were implemented within this design as opposed to other options due to the fact that this is the best practice for exposing server side functions. It also is a simple way to guarantee that components can work across various operating systems giving a modular infrastructure. For example if the Windows Server 2003 implementation of the Certificate Authority and RADIUS server were replaced by other vendors solutions or if the operating system was changed on some server elements to, for example, Linux, no reworking of the client or web service would be required. This project works around multiple operating systems as it stands, both Windows Server 2003 and Pocket PC 2003.

The web services that will be used for this project must be able to take the information that is being passed to them and forward it on to the required server interface, and also deal with any replies that the server requires.
The PDA Client Enroller will be sending SOAP packets to the web service which will in turn be forwarding the requests that have been encapsulated to the Certificate Authority server. After processing, the CA server will be routing the return messages via the web service to the PDA Client Enroller.
6.6 Access Point

The access point must be setup to deal with encryption between the device and the access point wirelessly. It also must be setup to enable communications with the RADIUS server; this takes the form of a shared secret which enables the access point to be registered as a RADIUS client with the server.
6.7 Wrapper & Automated Build

The automated build will be the final application for the end user elements of the overall project. Apart from these elements, certain other items will need to be considered to make this user friendly design. Ideally little or no user interaction should be required.
Required elements for the end user include:

· The installation of the root certificate from the trusted certificate authority on to the secure store on the device.

· Installation of the Power on Password application and its initialisation.
· Installation of the PDA Client Enroller.

Other elements that will be added to give extra functionality to the users include:

· BatMemTime
, which puts useful information like the battery level on the today screen.

· Pocket RAR
, a decompression utility that works with rar and zip files.

· McAfee Pocket Virus Scan
, demonstration licence.
Along with these applications, various other settings need to be applied. There will be a lot of files required for this automation to take place; therefore these files could be packaged into one installer which could then be used to even deploy the solution to the device again at a later date without the need to retrieve it again.

Chapter 7 Implementation – PDA Applications & Web Services
7.1 Over View of Public Key Cryptographic Standards
The Public Key Cryptographic Standards were originally created and published by RSA laboratories
.

This system can be used for both the encryption of information and as the basis of a digital signature system. The digital signatures can be used to prove the authorship and authenticity of digital information. The key may be any length; this depends on the implementation used by the issuing body, however the longer the keys are, the more secure the implementation.
These standards are broken down further, each element responsible for the control of particular sections. Only PKCS#7, #10 and #12 will be considered here as these are the elements utilised, these are listed in Figure 7‑1.

[image: image6.emf]NameUsage

PKCS#7

Cryptographic

Message Syntax

Standard

Used to sign and/or encrypt messages

under a PKI. Used for certificate

dissemination, for instance as a response

to a PKCS#10 message.

PKCS#10

Certification Request

Standard

Format of messagse sent to a Certificate

Authority to request certification of a public

key.

PKCS#12

Personal information

Exchange Syntax

Stanard

Defines a file format commonly used to

store private keys with accompanying

Public key certificates protected with a

password-based symmetric key.

Figure 7‑1 Used PKCS Standards (Ref: Wikipedia, 2005
)
PKCS#7 for the project is used to sign the PKCS#10 requests and also used for the dissemination of the PKCS#12 responses.
The PKCS#10 is the request sent to the Certificate Authority to request a certificate; this is generated with the details in Figure 7‑2 and the PKCS#7 using a generation mechanism. Once completed this is sent to the web service.

Certificate Request Info

Version

Subject Name

Public Key info

Attributes

Algorithm

Signature

Figure 7‑2 Typical PKCS#10 Request
If the PCKS#10 is authorised, the Certificate Authority replies with a PCSK#12 response. This contains the certificate. The private key is used to authenticate the response and create the certificate for installation.
7.2 PDA Client – Certificate Enroller

The first task that the enroller must complete is to send a request to the PDAWebService. This request takes the form of passing the users details (username, password and domain). A prompt is displayed to the user as shown in Figure 7‑3. Once the user enters their details and clicks login, these are forwarded on to the web service.

[image: image7.png]
Figure 7‑3 PDA Client Enroller Details Prompt
If a successful response is received from the Active Directory via the PDAWebService, the application moves on to show the user the installation process. At this point a “tick” is placed to inform the user that the Active Directory check was successful, as shown in Figure 7‑4.
[image: image8.png]
Figure 7‑4 PDA Client Enroller – User Information Screen
Next the process continues by creating the PKCS#10 request. This is done by first creating the PKCS#7 to encrypt the PKCS#10, and then the creation of the PKCS#10 itself containing the public key of the root certificate that is preinstalled on the device. The PKCS#10 is created by using the guidelines that are freely available on the MSDN website
. If this is completed correctly, the Request Certificate of Figure 7‑4 has a “tick” placed beside it.
Once this has been created it is sent to the CertRequestSoapSrv web service. This service then forwards the request on to the Certificate Authority. At this point the CA takes the details encoded within the PKCS#10 and checks the AD to verify that the user has the proper permission to have a certificate issued. If these permissions are present, the CA creates a PKCS#12 that is sent back to the PDA Client Enroller via the CertRequestSoapSrv web service.
If the application receives the PKCS#12 reply from the Certificate Authority, the next step is the installation of the certificate. This is done by the dissemination of the reply private key of the root certificate that was used for the PKCS#10 request. This is found within the certificate store. Once the certificate is installed a “tick” is placed next to Install Certificate on Figure 7‑5.
Once the certificate has been installed it is then tested to ensure that it has been installed correctly. Once this has been verified a “tick” is placed next to Test Certificate as shown in Figure 7‑5. At this point the user has the option of exiting the application or viewing the log file.
[image: image9.png]
Figure 7‑5 PDA Client Enroller - Installation Details Completed
The final element that had to be developed was the details screen; this was developed for debugging the device after the release was completed. Once the enrolment has been completed, the user has the option of viewing the details; this was done by utilising a multithread that creates a log file on the PDA. If the user clicks on “Details” as seen in Figure 7‑5 they will be presented with the log file as shown in Figure 7‑6. This is the last element of the PDA Client Enroller.
[image: image10.png]
Figure 7‑6 PDA Client - Details Screen
7.3 Power on Password/PIN
For a successful application of this nature it is required to create a Control Panel (CPL) file. The reason for this is to create an installed application with DLL’s that cannot be removed by the user. As such, the development platform used was embedded Visual C++. If Visual Studio and C# were used, there would have been no way to create this application as it would have created a cabinet file installer that the user could uninstall at any time, with no option of creating a CPL. As we do not wish to give the end user the ability to uninstall the application this option was not viable.

Beginning the development of this application thought was first given as to how that development would begin. This was answered by using some sample code, STPasswordManager, provided by Vassili Philippov (hosted on pocketpcdn.com)
. Once this decision was made, the next step was to implement the rule set
 that was defined.

One of the key elements of that had to be enforced was that the application was always the top item on screen to stop users from bypassing the POP application. The default password manager that comes with the system does this at a low level, so some investigation was required to find the entry point to the API and replacing the DLL call that was there. This made it possible to open the window stopping all other interaction with the device until a valid password or PIN has been entered.
Along with finding the call, work started on the user interface. The first interface that all users will be presented with is the prompt to enter their password or PIN, as well as a verification of the entry which is standard to insure there are no entry errors. This can be seen in Figure 7‑7.
[image: image11.png]
Figure 7‑7 POP Entry Screen
As per commonly used standards for password control, the entry is masked so that a passer-by or someone trying to monitor the entry cannot read it in plain text from the screen. The entry is then hashed using MD5 and stored on the PDA. The hashing occurs so that the entry is not stored in plain text on the device which is easy to retrieve when the device is unlocked.

The next step that was worked on was the dialogue for incorrect entries of the setting of the password/PIN. Incorrect entries occur when the user enters their desired PIN and the new and confirmation entries do not match or do not follow the required rules that have been set. An example of a rule mismatch is shown in Figure 7‑8.
[image: image12.png]
Figure 7‑8 POP Rule Error
Following this, code was implemented to set up the hard resetting of the device if the PIN is entered five times incorrectly. This was done with a simple flag tracking the number of incorrect tries and a reset if the user enters the correct PIN at any time.
Also implemented was the method of locking the device for 30 minutes between the third and fourth, and fourth and fifth attempts. This was done by storing the time that the first of these attempts was made, and not giving the user the opportunity to make an attempt until the cool off period has passed. The screen that the user is presented with after making a failed attempt after the third and fourth entries informs the user of the remaining amount of time that they must wait until they can try again this can be seen in Figure 7‑9.
[image: image13.png]
Figure 7‑9 POP Cool Off Period
The last item to be created for this part of the application was the hard resetting of the device on the fifth incorrect entry of the PIN. This was done by a call to a function on the device via a kernel call
. Once the user has input the fifth incorrect entry the user is informed that the device will hard reset as shown in Figure 7‑10.
[image: image14.png]
Figure 7‑10 POP Hard Reset
The application had to be made available to the user so they could interact with it; the only function that they are able to access is the change password function. The user had to have access to change the password at any time. To access this, an entry had to be made on the control panel screen. CPL files are automatically added to the settings screen and the icon is set within the control options.
When the user activates the CPL they are immediately prompted to re-enter there current PIN to gain access to the password change function. On this screen the user must again enter their current PIN, the PIN they would like and a verification of the new PIN. This change also had to follow the rules that had have previously been implemented and when the user hits “OK” the rules are checked, and if it fails the rules, the user must re-enter a PIN that is accepted by the rule set. Once the PIN has been accepted the user is informed that the new PIN has been accepted. The PIN change dialogue can be seen in Figure 7‑11.
[image: image15.png]
Figure 7‑11 POP PIN Change Dialogue
With all of these implemented, the POP application moved to the final end testing phase.
7.4 PDA Web Service

This web service began as a very simple implementation. It began with a test function and then the creation of the handler for taking the communication from the PDA Client Enroller and querying the Active Directory. And finally, reporting back to the client if the query was successful or not.

The web service was then further developed. At this point, the same query was made, and if successful the PDA name was taken and a new account was made on the AD for the device. This was to implement device authentication so that if a user had multiple devices and one was lost or stolen, that the certificate that was issued to that device could be disabled without effecting the other units that the owner had. This was not implemented within this project as it was out of scope and a great deal of time would be required to fully implement this element. As such, the code was left for any future work carried out on this project.

7.5 Certificate Request Soap Service
As with the PDAWebService, this began with test functions to check communications. The implementation of the functions required were to simply take the input PKCS#10 and pass it to the Certificate Authority, and take the PKCS#12 response and to send that back to the PDA Client Enroller.
Chapter 8 Implementation – Server

The server is the central controller for the whole project. Controlling all users that are able to access the network, their permissions, certificates, web hosting, DNS and DHCP. The following sections show the setup of each server element to enable Certificate authentication.
8.1 Active Directory – Domain Controller

The AD controls all of the users and their permissions. The set up for this project is taking it on the basic level, giving anyone with Domain User privileges the ability to obtain a certificate.

8.1.1 AD Setup

The AD is set up in the default mode, registering with the domain required. Figure 8‑1 shows the properties of the UUMagee AD entry.

[image: image16.png]
Figure 8‑1 AD UUMagee Domain Properties
8.1.2 User Setup

Each user that will be accessing the network must be setup on the Active Directory.

User name, phone number etc, this is not a required field, but when the database gets larger, it becomes a requirement. An example of this is shown in Figure 8‑2.

[image: image17.png]
Figure 8‑2 User Properties General
Each user must also have a unique username; this can be used as both the login name and also the form of the email address for that user. Figure 8‑3 shows a user account normally for the creation of the account; the user must change the password at the next logon.

[image: image18.png]
Figure 8‑3 User Properties Account
Membership of different groups can be allocated to users as well, giving various access privileges to those in trusted positions, and giving limited access to those that do not require any of these permissions. Larger organisations create their own group policies for access permissions.

For this exercise only access to the Domain Users group is required to access this domain, as shown in Figure 8‑4.
[image: image19.png]
Figure 8‑4 User Properties Group Memberships
For the wireless logon, the users must be enabled for remote access. This enables the users to be verified by the RADIUS server, giving the user permission to connect. This is shown in Figure 8‑5.

[image: image20.png]
Figure 8‑5 User Properties Dial-in
Any user that is created following these guidelines will be able to enrol a certificate and connect to the network wirelessly as well as logon to any wired network devices.

8.2 Web Server – ISS
The Web server is set up in default mode; the only changes to be made are to the directory structure where the sharing settings must be changed to give anonymous users the ability to read from the directory.

8.3 Certificate Authority
8.3.1 Installation
We begin by installing the Certificate Authority. Once the installer begins we are prompted as to the type of CA we wish to use, as shown in Figure 8‑6. We select Enterprise root CA and proceed. After this step we then select the name of the CA, which was set to “pki” and finish the installation.

[image: image21.png]
Figure 8‑6 CA Installation Type
8.3.2 Setup

We start the Microsoft Management Console, add the snap in certificate templates and we duplicate the Workstation Authentication template. This selection was made because this template allows auto enrolment and client authentication. We give the template a name, in this case PDAClientAuth.

[image: image22.png]
Figure 8‑7 Properties of New Template
Next we move to the Subject Name tab, and we select the option Supply in the request, this is shown in Figure 8‑8.
[image: image23.png]
Figure 8‑8 Subject of New Template
Then we move to the Security tab, Figure 8‑9, and we set the Authenticated Users to give them both Read and Enrol permissions.
[image: image24.png]
Figure 8‑9 PDAClientAuth Properties Security
Following this, return to the Certificate Authority and certificate templates, select New Certificate Template to issue, and select the certificate that has just created as shown in Figure 8‑10.
[image: image25.png]
Figure 8‑10 Certificate Template Addition

Next we go to the pki certification authority and go to the security tab (Figure 8‑11), and ensure the authenticated users are able to request certificates.

[image: image26.png]
Figure 8‑11 pki Properties Security
We have now set up the RADIUS server. We can use this section to view and also export the certificate which will be required later.
8.4 RADIUS Server – IAS
The RADIUS server element controls all remote access to the network. This includes authentication to the wireless network.
· The first step is to set the access point up as a RADIUS client; this is done by accessing the Internet Authentication Service and filling in the details as shown in Figure 8‑12.

· The Friendly name is for easy identification of a connection device later so if there are any issues with an access point, its setting can be checked.

· Following this the IP address of the device is entered and verified.

· The Client-Vendor option must be selected. As the access point that is to be used in the project is a Cisco device, this option has been selected.

· A shared secret must be applied here that will also be used within the configuration of the access point. This enables the access point to be validated and enabled for the communication and authentication of devices that are connecting to the network.

[image: image27.png]
Figure 8‑12 RADIUS Client Properties

Once these settings have been applied the Client will appear on the RADIUS clients screen as shown in Figure 8‑13.
[image: image28.png]
Figure 8‑13 RADIUS Clients

The remote access logging is an optional component but can be used for debugging any problems that can occur. This, although being optional, should be considered a requirement.

Next we must create a Remote Access Policy. Firstly we must give the policy a name; here it has been set to PDA. Following this the settings must be made, to this policy, adding NAS-IP-Address and setting it to the address of the Access Point. Then adding the authentication type EAP. Once this is completed you should end up with the settings showing up as shown in Figure 8‑14.

[image: image29.png]
Figure 8‑14 PDA Policy Settings

Next we must edit the profile, most of the settings can be left at their default state, and some refining can be made to meet needs. On the authentication tab some changes need to be set. Unselect all tick boxes as shown in Figure 8‑15.

[image: image30.png]
Figure 8‑15 PDA Policy Authentication

The EAP Methods must then be set; here we add Smart Card or other certificate as shown in Figure 8‑16.

[image: image31.png]
Figure 8‑16 PDA Policy EAP Providers

Edit this entry and ensure that the Certificate is issued to the correct server, with the Issuer being the Certificate authority, Figure 8‑17 shows how the Certificate Properties should appear.
[image: image32.png]
Figure 8‑17 Smart Card / Certificate Settings
Once these settings have been made, the Policy should show up in the Remote Access Policies windows as shown in Figure 8‑18. The order of the policies can be set to the requirements of the server. In this instance the PDA policy has been set to the highest in the processing order.

[image: image33.png]
Figure 8‑18 RADIUS Remote Access Policies

The last element of the RADIUS server that needs to be set is the Connection Request Policy. As before the policy name has been set to PDA this is shown in Figure 8‑19. Then NAS-IP-Address is added and the IP Address of the access point is set here.

[image: image34.png]
Figure 8‑19 PDA Request Policy Settings

Once this has been completed we again set the processing order of the policies.

[image: image35.png]
Figure 8‑20 Connection Request Polices

8.5 DHCP Server & Syslog

8.5.1 DHCP Server

To reduce the load on the server the native DHCP server on the Windows Server 2003 platform was not utilised. The reason for this is that it has been designed as an enterprise level solution, spanning across multiple domains and as such, takes a large footprint on the memory of the system and large amount of processing time. As the server is running so many other tasks the search for an alternative server was made, and for the purpose of this project, the DHCP server element of TFTPD32
 was used. Figure 8‑21 shows the interface of the DHCP server.

[image: image36.png]
Figure 8‑21 TFTPD32 DHCP Server

8.5.2 Syslog

One of the other benefits of using the TFTPD32 application was also utilising its Syslog server (shown in Figure 8‑22). This was beneficial in tracking what was happening on the access point. It was used for debugging throughout the life of the project.

[image: image37.png]
Figure 8‑22 TFTPD32 Syslog Server
8.6 DNS Server

The Domain Name Server is a required element; it is however setup in its default state.
Chapter 9 Implementation – Access Point

The access point in this design has a large role to play. It deals with all wireless communications with the devices that are attached and it is also a RADIUS client within the network which enables it to perform these communications.

With the web based interface (Figure 9‑1) for the access point, all settings can be made to the access point via a web browser.

[image: image38.png]
Figure 9‑1 Cisco Web Based Interface
The settings that need to be changed to set the access point up as a RADIUS client on the network are as follows.

9.1 Network Interfaces

Firstly the IP address should be set (Figure 9‑2). This can be set as a dynamic address with the name of the access point set on the RADUIS server or, it can be set up with a static IP address which is registered on the RADIUS server. In this case the access point has been set with a static address.

[image: image39.png]
Figure 9‑2 Access Point IP Configuration
The next step is to change the default password access to the device, preferably changing both the username and password.

9.2 Security

Then we move to the SSID Manager (Figure 9‑3). Here we create the name of the wireless network that we wish to use for the network. For this SSID we make the following changes.
Authentication Settings

Open Authentication with EAP

Server Priorities

EAP Authentication Servers

With Priority 1 set to the address of the RADIUS server.

Authenticated Key Management

Key Management – Mandatory – WPA
Apply these settings under the Global Radio SSID Properties; set the Guest Mode and Infrastructure SSID settings to the name of the SSID that is required - UUMageeWLAN in this case.
[image: image40.png]
Figure 9‑3 Access Point Security - SSID Manager
On the Encryption manager section (Figure 9‑4); the Cipher must be set to TKIP + WEP 128bit. This is the setting for the encryption of the data traffic between the AP and any wireless device connected. With this setting and the setting of WPA under the Authentication Management on the SSID management section, the communication is set up as WPA – TKIP.

[image: image41.png]
Figure 9‑4 Access Point Security - Encryption Manager
The next step is to point the access point at the RADIUS server. To do this we use the Server Manager section (Figure 9‑5). Firstly we set the type of the server, RADUIS, and then we set either the hostname or the IP address of the RADIUS server. After this we set the shared secret that we have already set on the server. The Authentication and Account ports we leave at the default settings.

[image: image42.png]
Figure 9‑5 Access Point Security - Security Management
Below these settings the only change that must be made is to set the EAP authentication to the IP address of the server.

Applying these settings to the access point will enable it to be used as a RADIUS client and permit authentication for any wireless devices with the correct certificates applied, and also communications following the authentication.

The access point configuration file, in text format, can be found in the appendices attached to the end of this report.

Chapter 10 Implementation – Wrapper and Automated Build

Now that we have all the elements created, tested and are ready for deployment, the next step is to create a user friendly installation that will make the implementation of the applications and settings idiot proof. We will also try to obtain a secure overall build through the installation of the Power on Password application before running the PDA Client enroller.

10.1 Automated Build

Before creating the wrapper for the PC, work began with the creation of the automated build solution. The decision was taken to use a visual basic script to run and control the build process.
10.1.1 Setting the Time and Time Zone

The first element that had to be completed was the setting of the time on the PDA. This was done by utilising one of the tools that comes in the rapi tools set, psynctime. This must be run twice to set both the time and the time zone. Using the evolutionary model, initially the time was not being set correctly and it was after some experimentation that the requirement to run the psynctime tool twice was realised.
10.1.2 Root Certificate Installation

Following this, the installation of the root certificate from the certificate authority had to be completed.
The root cert from the Certificate Authority needs to be imported just as the cert. There is no requirement for the private key from certificate authority to be on the PDA, or any other device, as the whole idea is that the certificate authority's private key is kept secure as it is used by the certificate authority to sign certificates that it trusts so that those certificates can be taken as known by the certificate authority (and whoever is keeping the CA's private key secure). The certificate authority's certificate can be passed around to anyone who wants it so they can validate client certificates against it.

Root certificates should be stored in the root certificate store on the device. This is where trusted root authority certificates are stored so that the device can validate other services\devices that authenticate themselves with certificates. In almost all cases that means the use of SSL connections is required.

To place the root certificates on the PDA, the first approach taken was using the rapi tool, prun. Firstly the DER format certificate file was put on to the device and it was run. This however was not successful as prun is unable to execute the installation in this way. Following some research a tool was found that could be used for the installation of a certificate on a PDA, cerimprt
. Running this enabled the installation of a root certificate on the device utilising standard device protocols, giving a cleaner method that can be done by hand. However it is much faster to implement and more reliable by using a Perl script as it is less error prone.
Therefore a different approach was required; using some references to MSDN
 on the management of certificates enabled the creation of a Perl script (cxml.pl) that creates an xml file that can be used to import the root certificate without the certificate being stored insecurely on either the PDA or the host device used for the build installation.
10.1.3 Connection Settings
An XML file has been created to set the connection settings on the PDA. This is required for the connectivity of the PDA Client Enroller. Without this setting the client cannot communicate with the Active Directory.

10.1.4 Remote Display

At different points some user interaction is required to proceed. The user is required to enter a PIN/Password at one stage and then to enter their login details to request a certificate. Users have a tendency to physically pick up the device and enter these details, and by doing so they will break the active sync connection. To avoid this, the utilisation of Remote Display (Figure 10‑1) is taken.
[image: image43.png]
Figure 10‑1 Remote Display
This enables the user to use the PDA in a window on the desktop that the device is attached to, stopping the user from interfering with the cradled device.
10.1.5 File Copy and Application Installation

Once these perpetrations have been made, the next step is to copy the application installation files across to the device. All the files are CAB files apart from the password application, which is copied directly into the windows directory. The others are dropped to the root directory and are installed in silent mode to suppress the messages (Figure 10‑2) that pop up once they are installed to state that they may not work properly.
[image: image44.png]
Figure 10‑2 Installation Message
Next the Password/PIN application is started and the user is prompted to put their Password/PIN in and then to click OK on the window that pops up to continue the installation.

[image: image45.png]
Figure 10‑3 User Interaction Screen - POP.
The next required action from the user is for them to enter their credentials into the PDA Client Enroller, again they will be presented with a pop up window that must be clicked upon once the certificate installation has been completed.
[image: image46.png]
Figure 10‑4 User Interaction Screen - Certificate
10.1.6 Completion

Once this has been done and the other applications have been installed, the build installer is almost complete. At this point the PDA restarts and stops the Remote Desktop Application.

10.2 Wrapper
Now that the automated build process has been completed it must be wrapped, or packaged up for the end users. As it stands, the end user element of the project is a collection of files. To transport these files they could simply be compressed within a zip or rar file.
To create a full windows installer for the package is a much neater process for the end user and it also enforces all the files to be installed within a common directory, with the added advantage of also compressing the materials for transport.

10.2.1 Script Creation

For the creation of this wrapper, Nullsoft Scriptable Install System (NSIS) was used as shown in Figure 10‑5. This open source tool is fast, small and flexible, and was ideal for the creation of this wrapper, which would enable the easy distribution of the over all package.

[image: image47.png]
Figure 10‑5 Nullsoft Scriptable Install System
For the creation process a script is created; this was done using HM NIS Edit
 (Figure 10‑6). This tool has a wizard that can be used to create a bulk of the script that is required. The main elements of the script are the following:
· Files for the end product

· Short cuts that you wish to include or create and where you wish to place them (desktop and/or start menu)
· Inclusion of icon files to be used with in the application
· Uninstall Options

· Read me attachment

· Licence attachment

· Registry entries

[image: image48.png]
Figure 10‑6 HM NIS Edit
10.2.2 Licence Enforcement

The ability to create a licence agreement that must be acknowledged was another requirement. This is shown in Figure 10‑7. To proceed with the installation, this licence agreement ensures that the end user knows and accepts the permissions and legalities that they must comply with to use the application(s).

[image: image49.png]
Figure 10‑7 Wrapper - Licence Agreement
10.2.3 Destination Folder

Once the user has passed the agreement screen they are then prompted to select an installation directory, Figure 10‑8. This can be the default directory (that was set within the script that was created), or the user can change where they would like to install.
[image: image50.png]
Figure 10‑8 Wrapper - Install Location
The user also has the option to change the name of the start menu folder; again the user may leave it at the default setting or change it to what they wish to use.
10.2.4 Installation Closing Options

On the final screen the user is asked if they would like to run the executable, in this case the automated build, and/or view the read me, this is shown in Figure 10‑9.
[image: image51.png]
Figure 10‑9 Wrapper - Finish Screen

If the user runs the automated build process, it initialises a batch file that will call the visual basic script (as NSIS will not run these files as they would other executables).

One advantage of having the files installed locally on the user’s computer is that they can rebuild their PDA while being offline - an advantage for users that are off site.
Chapter 11 Testing – Server and Access Point

11.1 Server

11.1.1 Active Directory

The Active Directory is a tried and tested application, this was left as one of the last elements to be tested and run in conjunction with the RADIUS server testing. A few simple tests were applied; these were carried out once the PDA Client Enroller was working and different users were added with various permissions applied to their accounts. Following this, trying to enrol users without the valid permissions was attempted, and also users with their permissions changed. Both the AD and the RADIUS both passed these tests without any issues.

11.1.2 Certificate Authority

The Certificate Authority element is a robust part of Microsoft’s Windows Server 2003 environment. The only tests that were required were that the templates that were specified worked correctly.

Once the RADIUS server and access point where implemented a test certificate was applied to a laptop and connection was attempted. The laptop was authenticated and the test was completed as a success.

11.1.3 Web Server

Another reliable element but testing was carried out none the less. The first test was to try and open a basic webpage that was set within the wwwroot directory. This failed on the first attempt, and with some checks it was discovered that the directory permissions were blocking access to guest users. When the required changes were applied to this directory and relevant sub directories, the test was rerun with a successful outcome.

Tests were carried out again during the development of the web services. The process that these tests followed was to open the web service within a web browser. Opening the web service in this way shows the functions that are exposed. During the development period of the web services some test functions were included and tested though the browser, as shown in Figure 11‑1.
[image: image52.png]
Figure 11‑1 Web Service Successful Connection
11.1.4 DHCP Server

This was a simple test to run. Firstly it was tested over Ethernet. The laptop was connected to a hub and another laptop was connected to the hub also. IPCONFIG was run on the second laptop, and the device had received an IP address within the range specified on the DHCP server.

The test was run again, this time with the access point connected to the hub, the access point had a fixed IP address within the range of the DHCP server, and a laptop connected wirelessly with the access point. IPCONFIG was again run, and the wireless connection on the laptop received an IP address within the pool specified on the server.

11.2 RADIUS Server & Access Point

These elements were tested in conjunction; the access point is configured to register itself with the RADIUS server.

The first test was to verify the access point as a client to the RADIUS server. This is done via the Internet Authentication Server during the setup. Once the access point has been configured, and added to the IAS, it must be verified. This was done and was correct as Figure 11‑2 shows.
[image: image53.png]
Figure 11‑2 Access Point Verification as RADIUS Client
The next test on the RADIUS server was to ensure communication with the Active Directory; this was part of the tests applied in Section 11.1.1 on page 85. This test was applied repeatedly with changes made to user privileges. All tests were successful.
Chapter 12 Testing – PDA Applications & Web Services
12.1 Power On Password

The Power on Password (POP) is a product that is designed to securely authenticate user access to PDA devices that are running Pocket PC 2003 operating system. This application will enforce the use of a strong password or PIN when turning on the device. Management and configuration abilities will be removed from the user so that the application cannot be disabled or reconfigured buy the user thereby enforcing power on security on PDAs.
This application should work on all PDA devices running Pocket PC 2003. The devices that it was tested on were

· Dell Axim x30

· Dell Axim X5

· Toshiba e800

Testing tools that were used were

· Active Sync

· Embedded Systems Registry editor

· Explorer

On the first set of tests applied on the application, the problems that cropped up were some of the rules were not working correctly. With minor tweaks, fixed typos and logic checks, these issues were corrected. At this point it was also discovered that some of the warning messages that should appear were failing to show, these were fixed also.
During testing of the change password a problem showed up where, the password screen would not accept the changed password or PIN. This was due to a misread on the password change dialogue; the new entry and confirmation entry would not match. The reason for this mismatch was due to the string read. Even though this was an insignificant mistake it took a lot of time and a thorough rereading of code to find the problem. Once it was identified, the problem was quickly resolved.
After much testing, a method for disabling the POP application was discovered by changing the registry entry shown in Figure 12‑1. By setting PowrPass from 01 to 00, the login screen that should occur when the PDA is restarted is negated, giving free access to the device. The password protection for the Active Sync connection is still enabled however.
[image: image54.png]
Figure 12‑1 POP Registry Hack
All tests that were carried out following fixes to the above issues were successful apart from “Must not be the same as one of your previous 8 passwords”. This was not implemented during development, and should be considered as an item that must be included in any future work.

One final issue occurred - for one percent of attempts to enter the password, the keyboard would not be available to enter them. Due to the fact that the application is forced to be on top, the user cannot enable the keyboard. This can be bypassed by restarting the device.

For the full detailed test results please refer to Appendix J.
12.2 PDA Client Enroller
Perhaps one of the most vexing issues to have occurred during the implementation of the project was with the release of this application. During debug testing the application communicated correctly on all devices with the Active Directory. However when a release was built the application failed continuously on the Dell Axim X30, but ran as expected on the Toshiba e800.

Re-evaluation of the code showed up no errors overall or in depth that could cause this problem. Finally checking the devices, the difference that could account for the problem was found in the network connections. Once the X30 Network Management settings were set to “My Work Network”, the application communicated as designed with the Active Directory.

Another problem that occurred that required a lot of investigation was during certificate request. The creation and sending of the PKCS#10 and the sending of the request ran correctly. Due to this the investigation shifted from the PDA Client to the CertRequestSoapSrv. Communication testing on the web service revealed that that this was not the problem. This process of elimination meant that the problem had to be on the server. The server settings on the certificate authority were set correctly, however it was discovered that the permissions on the temporary folder on the server were causing the problem. By editing the permissions on this folder the problem was resolved.

Testing was also done using the login details to ensure that the authentication was occurring, and also that the certificate was being downloaded and installed correctly.

12.3 CertRequestSoapSrv & PDAWebService
On the first set of tests, no matter what function was called, there was an error returned. As mentioned in 12.2 the problem was with the settings on the temp folder on the server, once the permissions were changed testing was reinitiated.

The approach taken for testing the web services was like testing and API, which is black box testing. It was given parameters and a response was received.

An example of this was by using Internet explorer to connect with the web service, and then to use the temperature function, give this the values of 100˚F (Figure 12‑2) and if the response is 37.77˚C (Figure 12‑3) then the web service is working correctly for that function.
[image: image55.png]
Figure 12‑2 Web Service Testing - Request
[image: image56.png]
Figure 12‑3 Web Service Testing - Reply
On the CertRequestSoapSrv a test was done by using a PCKS#10 generator to create a request, and this was passed to the web service, the returned data was the PKCS#12, this was then checked using OpenSSL, and the data was verified.

On the PDAWebService, user data for both viable Active Directory accounts and non existent accounts were passed to check that the web service was working correctly.

Chapter 13 Testing – Automated Build, Wrapper & Overall
13.1 Automated Build
Once created the automated build test began, this was not as smooth an operation as was hoped.
The first fault that became apparent was that the PDA Client enroller would not start automatically. After some testing it became apparent that the VB script was unable of handling the spaces within the directory location of the executable correctly. To bypass this a batch file was created and was run in place of a direct call and this enabled the automated running of the application.
Once this had been corrected, the next problem was the constant failing of the certificate enroller. Checking the store, the root certificate had been installed correctly and with a rerun, the enrolment of a certificate succeeded. Following some tests it became obvious that the certificate store needs to be initialised before the CryptoAPI
 calls to install certificates can be used. By calling the control panel certificate element the required call was made.
The order in which the applications where installed also had an effect on the running of the installer. The virus scanner was taking a lot of processing time and takes a lot of cycles to complete, and calling elements after its initialisation caused intermittent problems, therefore by playing with the order of the installation this issue was alleviated.
With the inclusion of the Remote Control application the build process became noticeably longer; this was due to the bandwidth that the application takes on the communications channel with the device. The largest requirement for bandwidth was the copying of the installers to the device, therefore, by placing these files on the device before starting the Remote Control item the issue was negated.

13.2 Wrapper

The testing of the wrapper element was the shortest testing and refinement period of the project.
On the first attempt, the installer ran relatively smoothly, with some of the refinements being that not all the installation files were being deleted. These included the directories created and the shortcuts that had been placed on the start menu.

Once these had been corrected the next step was to add the Remote Desktop shortcut to the start menu shortcut list. Following this the only testing required was to try the application on other computers and operating systems and these were successful for the scope of the project.
13.3 Overall Testing
The testing now began on the overall project testing, beginning as an end user would and running though until a successful connection was obtained.

As each element of the project had already been fully tested and passed, no problems were foreseen, and as hoped each element of the build worked as planned. This ended with the successful display of a web page (Figure 13‑1) that is hosted on the server.

[image: image57.png]
Figure 13‑1 Successful Connection
With this final test being completed successfully, the development and testing of the project came to an end.
Chapter 14 Evaluation, Future Work & Conclusion

14.1 Evaluation

During the design phase and the testing, comparisons on what was created and what was readily available on the market were composed. Much of the implementation is covered within the testing chapters; other points of note are listed below.

14.1.1 Power on Password

The POP application was created to enhance what is standard with the device. The Pocket PC 2003 implementation has both PIN and strong password
 options, but this has some flaws if it was implemented within the enterprise. The first would be that the PIN requirement for the standard application is only 4 digits long and sequences can be entered. This would not be suitable for a device with sensitive information contained upon it; therefore in this aspect the POP created here is a superior product. The password option on the device does specify a strong password however it does not enforce other rules that were specified in this project, and as such this implementation was not useful. Lastly the user has the option of turning off the standard password application; this function is definitely not allowed within any organisation, and is only useful to the normal home user.

14.1.2 PDA Client Enroller

The PDA Client Enroller was created as a secure portal to connect, authenticate, request and install a certificate. This can be done to an extent via a web browser to request the certificate, however the web based feature is turned off
 on the server so that an enroller is required. This controlled access gives a more secure method of implementing certificates as opposed to letting all users request them.

14.1.3 Overall Project

There are very few options available on the market place that could be compared to this project, none that would be an exact match. One perhaps that could be considered close would be Good Link
. This implements a password application similar to what has been created here. It also secures the desktop and adds some other features, however, it does not implement a secure certificate enrolment process, nor does it have the modular approach that can add in extra user components upon requirements. It is also an expensive licence to be utilised, whereas here with the full engineering of the product, a team can build a unique, flexible application suited to exactly the requirements of any company. As such, this project complies with the scope and requirements laid out in full, and passed evaluation on these points.

14.2 Future Work
To enhance this prototype and to increase the security of the overall solution some items may be considered for future implementation.

14.2.1 Infrastructure and Transport

Ideally for an implementation of this type, there would be multiple servers for handling the different elements; this would increase the security and also the stability of the infrastructure.
Depending on the size of the implementation, load balancers could also be applied before hand to any server element that is under pressure. With the number of devices that are now seeking access to networks - infrastructure items, server side elements and user devices - the need for load balancers are becoming more and more necessary.

This solution is aimed to authenticate the user of the devices that are attached. However, device authentication with the device attached to the user in the central database may be a better solution. With this method a user could have multiple certificates issued to them, with the change being made, each device would have its own single certificate. One advantage of this is that if a device is lost or stolen, then only the certificate that was applied to that device would require cancellation. The code required for the implementation of this is included with the PDAWebService, but due to both time constraints, and as it was out of scope for the over all project was dropped and was not totally developed. For future completion an entry would be created on the AD for the device which would have the permissions for a certificate to be issued.
The transport of the user details should be wrapped in an SSL layer on their transport to the web service to ensure the integrity of these details, ensuring that a packet sniffer on the network cannot intercept the details while it is in transit. With the current implementation these details are being transmitted in plain text.

The scope of the project could also be expanded to not just include small form factor devices but all devices that are connecting to the network, both wirelessly and also any devices that are connected over a physical connection. This could be used to ensure that unwanted users or devices have no method of joining the network.
This is not the final solution; as with all security models, constant monitoring, adaptation and updating are required. As the progression of new security solutions appear, they must be appraised and considered for integration with the current project to augment the overall security solution.

14.2.2 Power on Password

A further investigation as to why the keyboard is not available at all times while entering the password should be carried out, and a method of ensuring that the keyboard is there should be developed.

With the current build process there is no check made to ensure that the application has been enabled, this only occurs once a PIN or password has been entered. The user can bypass this currently by ignoring the prompt to enter a PIN or password and proceeding with the build.

The rule “Must not be the same as one of your previous 8 passwords” was not implemented on the POP application. The application should be developed further to include this rule.
The flaw with the application, where the user can hack the registry to disable the application should be fixed. A method that could be implemented to resolve this issue would be to create another small application that monitors the registry entry, and if there is a change, resets the entry to the required value and resets the device. This application would need to be installed and run in a stealth mode so that the user does not know that this guardian is on the system. To further extend this, the POP application could monitor the guardian that monitors the registry entry, this adds a layer of security, and there is a trade off here of processing time consumption versus security.
14.2.3 PDA Client Enroller

The communication between the PDA and the web service containing the user’s credentials are being transported in plain text. A malicious user using a packet sniffer would be able to intercept this traffic and impersonate this user on the network. By wrapping these packets in a SSL layer or using some other encryption method on both the enroller and the PDAWebService this issue could be resolved.

If the application receives a rejection from the Active Directory, the client is currently designed to exit. The inclusion of a message to the user of the reason of this failure should be incorporated into the design.
14.2.4 Automated Build Process

The automated build process that has been used is not very user friendly, as the end user is getting limited information as to the progress of the build process. This should be changed that the users are getting information on what is occurring during the build process at any given time. Without this, users could feel that the process has stalled or failed. This encourages them to interact with the process, which is the opposite of what automating the process is trying to accomplish.

Currently the user must set up the WLAN Profile once the automated build process has completed. For a full automated build, an application would be required to create the profile.
14.3 Conclusion

We have shown that even though it is difficult to create a secure Wireless LAN it is possible to combine existing technologies to create an architecture that enables both strong security for the WLAN transport itself and for the process that manages and distributes the credentials that are required to connect to the WLAN that is at the same time straightforward for end users to use.
With this implementation, it is very easy to deploy the security components to the end user devices and it eliminates the risks that are associated with shared secret keys or the insecure deployment of important credentials (e.g. deploying authentication certificates by mailing them to users, using hardware tokens that could be stolen, using username\password authentication which is vulnerable to active attacks.)

This project will secure the authentication of the 802.1x standard with the use of web services and a build application that will also ensure that the device is secure. With this, we can deploy a Wireless LAN solution for PDA’s in the Enterprise.

Appendix A – List of References

 A Vladimirov, K Gavrilenko and A Mikhailovsky, 2004, Wi-Foo The Secrets of Wireless Hacking, Arhont.

ISBN 03210202171

J Prosise, 2002. Programming Microsoft .NET, Microsoft Press

ISBN 073561376
L Barken, 2003. How Secure is Your Wireless Network?, Prentice Hall.

ISBN 0131402064
 The History of Computing. Crobart 2000.

http://www.thocp.net/reference/internet/internet1.htm
http://www.thocp.net/reference/internet/internet1.htm
Oldcomputer.com, 2005.
http://www.old-computers.com/history/detail.asp?n=23&t=3
S McClure, J Scambray and G Kurtz, 2003. Hacking Exposed 4th Ed, Foundstone.

ISBN 0072227516

T Quinn-Andry and K Haller, 1998. Designing Campus Networks, Cisco Press.

ISBN 1578700302

A Wigley and S Wheelwright, 2003. Microsoft .NET Compact Framework, Microsoft Press.

ISBN 0735617252

Directions Mag, 2005.

http://www.directionsmag.com/article.php?article_id=372

Intel Corp, 2004.

http://www.intel.com/standards/case/case_802_11.htm
http://www.intel.com/standards/case/case_ethernet.htm
http://www.intel.com/technology/magazine/standards/80211i-0505.htm Jesse Walker, 2005.

Russell, Dean and Vines, 2002. Wireless Security Essentials. Wiley

ISBN 0471209368

J Geier, Wi-Fi Planet, 2002.

http://www.wi-fiplanet.com/tutorials/article.php/1368661

Fluhrer, Mantin and Shamir, 2001. Weaknesses in the Key Scheduling Algorithm of RC4.

http://www.drizzle.com/~aboba/IEEE/rc4_ksaproc.pdf
Wi-Fi Alliance, 2002. “Overview – Wi-Fi Protected Access”

http://www.wi-fi.com/opensection/pdf/wi-fi_protected_access_overview.pdf
Ohrtman and Roeder, 2003. Wi-Fi Handbook: Building 802.11b Wireless Networks, McGraw-Hill Networking.

ISBN 0071412514.

Wi-Fi Alliance, 2004. Wi-Fi Security at work and on the road.

http://www.wi-fi.org/OpenSection/secure.asp?TID=2#WPA2
Librenix, 2003. “VPN and IPSec explained”.

http://librenix.com/?inode=2629
D Melnick, M Dinman and A Muratov, 2003. PDA Security, McGraw-Hill.

ISBN 0071424903
Answers.com, 2005. ARCnet: Information from Answers.com

http://www.answers.com/topic/arcnet
Tech fest, 2002.

http://www.techfest.com/networking/lan/token.htm
IEEE.org

http://www.ieee.org/
Microsoft MSDN, 2005.

http://msdn.microsoft.com/webservices/webservices/understanding/webservicebasics/default.aspx?pull=/library/en-us/dnwebsrv/html/webservbasics.asp
John Sharp and Jon Jagger, 2003. Visual C# .NET Microsoft Press.

ISBN 0735619093.
Microsoft Windows Server 2003 Deployment Kit: A Microsoft Resource Kit, 2004. Microsoft Press.

ISBN 0735614865.

W3Schools, 2005.

http://www.w3schools.com/ngws/ngws_webservices.asp
Windows Networking, 2003
http://www.windowsnetworking.com/articles_tutorials/Windows_2003_Active_Directory_Overview.html
Wikipedia, 2005

http://en.wikipedia.org/wiki/Active_Directory
http://en.wikipedia.org/wiki/Certification_Authority
http://www.webopedia.com/TERM/W/Wi_Fi.html
http://en.wikipedia.org/wiki/Radius_server

NetworkDictionary, 2005

http://www.networkdictionary.com/protocols/radius.php
M Bauer, 2003. Building Secure Servers with Linux, O’Reilly.

ISBN 0596002173

P G Aitken, Windows Script Host,PH PTR, 2001

ISBN 0130287016

Introduction to C# Programming with Microsoft .NET, Microsoft Learning, 2002,

Official Course Book, Course 2609A

Appendix B – Abbreviations

802.3

IEEE Standards for Ethernet

802.5

IEEE Standards for Token Ring

802.11
IEEE Standards for Wireless LAN’s (Wi-Fi)

AAA

Authentication, Authorization and Accounting
AD

Active Domain from Microsoft

AES

Advanced Encryption Standard

API

Application Program Interface

ARCnet
Attached Resource Computer Network
CAB

Cabinet File extension

CPL

Control Panel file extension, a specialised DLL

CRL

Certificate Revocation List

CSMA/CD
Carrier Sense Multiple Access with Collision Detect
DHCP

Dynamic Host Configuration Protocol

DLL

Dynamic Link Library file extension

EAP

Extensible Authentication Protocol

FCC

Federal Communications Commission (US)

FSM
Reference to weakness found by Fluhrer, Mantin and Shamir.

GUI
Graphical User Interface

IEEE

Institute of Electrical and Electronic Engineers
IIS

Internet Information Services

IV

Initialisation Vector

LAN

Local Area Network

LDAP

Lightweight Directory Access Protocol

MAC

Media Access Control

Mbps

Megabits per Second

MD5

Message-Digest algorithm 5

NAS

Network Access Server
NIC

Network Interface Card

OFDM

Orthogonal Frequency-Division Multiplexing

PDA

Personal Digital Assistant

PEAP

Protected Extensible Authentication Protocol
PKI

Public Key Infrastructure

PKCS

Public Key Cryptography Standards

POP

Power on Password

PSK

Pre Shared Key

RADIUS
Remote Access Dial-Up User Service

SOAP

Simple Object Access Protocol
SSID

Server Set Identifier

SSL

Secure Sockets Layer

TKIP

Temporal Key integrity Protocol

USB

Universal Serial Bus

VPN

Virtual Private Network

WEP

Wired Equivalent Privacy

Wi-Fi

Common name for Wireless Network communication

WLAN

Wireless Local Area Network

WPA

Wi-Fi Protected Access

WSDL

Web Services Description Language

XML

Extensible Mark-up Language

Appendix C – WEP Encryption Process

The encryption process always begins with a plaintext message that we want to protect. First WEP performs a 32-bit cyclic redundancy check (CRC) checksum operation on the message. WEP calls this integrity check value and concatenates it to the end of the plaintext message. Next, we take the secret key and concatenate it to the end of the initialisation vector (IV). Plug this IV and secret key combination into the RC4 Pseudo-Random Number Generator (PRNG) and it will output the key stream sequence. The key stream is merely a series of 0’s and 1’s, equal in length to the plain text message plus CRC combination. Finally we perform a XOR operation between the plain text and the message plus CRC combination and the key stream. The result is the cipher text. The IV (not encrypted) is pre-pended to the cipher text and included as part of the transmitted data. This is shown graphically in the Figure below.

Figure E‑1 WEP Encipherment

This process is a paraphrase of a section in How to secure your Wireless Network, 2003, Lee Barken. ISBN 0131402061
Appendix D – Access Point – Configuration

!

version 12.2

no service pad

service timestamps debug datetime msec

service timestamps log datetime msec

service password-encryption

!

hostname UUAP1

!

!

username ad_argus privilege 15 password 7 06472A205C5A050A55

username cisco privilege 15 password 7 020B0B550C0941701E1D

clock timezone B 2

ip subnet-zero

!

aaa new-model

!

!

aaa group server radius rad_eap

 server 192.168.0.50 auth-port 1812 acct-port 1813

!

aaa group server radius rad_mac

!

aaa group server radius rad_acct

!

aaa group server radius rad_admin

!

aaa group server tacacs+ tac_admin

!

aaa group server radius rad_pmip

!

aaa group server radius dummy

!

aaa group server radius rad_eap2

 server 192.168.0.50 auth-port 1812 acct-port 1813

!

aaa group server radius rad_eap1

 server 192.168.0.50 auth-port 1812 acct-port 1813

!

aaa authentication login default local

aaa authentication login eap_methods group rad_eap

aaa authentication login mac_methods local

aaa authentication login eap_methods2 group rad_eap2

aaa authentication login eap_methods1 group rad_eap1

aaa authorization exec default local

aaa accounting network acct_methods start-stop group rad_acct

aaa session-id common

!

bridge irb

!

!

interface Dot11Radio0

 no ip address

 no ip route-cache

 !

 encryption mode ciphers tkip wep128

 !

 ssid UUMageeWLAN

 authentication open eap eap_methods1

 authentication network-eap eap_methods1

 authentication key-management wpa optional

 guest-mode

 infrastructure-ssid optional

 !

 ssid guest

 authentication open eap eap_methods2

 authentication network-eap eap_methods2

 authentication key-management wpa optional

 !

 speed basic-1.0 basic-2.0 basic-5.5 6.0 9.0 basic-11.0 12.0 18.0 24.0 36.0 48.0 54.0

 rts threshold 2312

 power local cck 30

 power local ofdm 5

 no preamble-short

 station-role root

 bridge-group 1

 bridge-group 1 subscriber-loop-control

 bridge-group 1 block-unknown-source

 no bridge-group 1 source-learning

 no bridge-group 1 unicast-flooding

 bridge-group 1 spanning-disabled

!

interface FastEthernet0

 no ip address

 no ip route-cache

 speed auto

 half-duplex

 bridge-group 1

 no bridge-group 1 source-learning

 bridge-group 1 spanning-disabled

!

interface BVI1

 ip address 192.168.0.51 255.255.255.0

 no ip route-cache

!

ip default-gateway 192.168.0.50

ip http server

ip http help-path http://www.cisco.com/warp/public/779/smbiz/prodconfig/help/eag

ip http authentication aaa

ip radius source-interface BVI1

logging history debugging

logging trap debugging

logging 192.168.0.50

radius-server host 192.168.0.50 auth-port 1812 acct-port 1813 key 7 05060901264300584B56

radius-server attribute 32 include-in-access-req format %h

radius-server authorization permit missing Service-Type

bridge 1 route ip

!

!

line con 0

line vty 5 15

!

end

Appendix E – Power On Password/PIN – Code
Ctrlpnl.cpp

#include "stdafx.h"

#include <atlbase.h>

#include <Afxdisp.h>

#include <Time.h>

#include <Afx.h>

#include "ctrlpnl.h"

#include "Resource.h"

#include "Password.h"

#include "PasswordDlg.h"

#include "STPasswordManager.h"

#include "PasswordDlg2.h"

#include "PasswordDlg3.h"

#include "PasswordDlg5.h"

#include "PasswordDlgMsg1.h"

#include "PasswordDlgMsg2.h"

#include "PasswordDlgMsg3.h"

#include "PasswordDlgMsg4.h"

#include <Winuser.h>

#include <SIPAPI.H>

#define ONE_HOUR ((__int64)10000000*60*60)

#define THIRTY_MINUTES ((__int64)10000000*60*30)

CControlPnl::CControlPnl()

{

 // Set up the static object pointer

}

CControlPnl::~CControlPnl()

{

}

// =-=

// The entry point to the Control Panel application.

// =-=

LONG CALLBACK CPlApplet(HWND hwndCPL,UINT message, LPARAM lParam1, LPARAM lParam2)

{

AFX_MANAGE_STATE(AfxGetStaticModuleState());

 switch (message)

 {

 case CPL_INIT:

 // Perform global initializations, especially memory

 // allocations, here.

 // Return 1 for success or 0 for failure.

 // Control Panel does not load if failure is returned.

 return 1;

 case CPL_GETCOUNT:

 // The number of actions supported by this Control

 // Panel application.

 return 1;

 case CPL_NEWINQUIRE:

 // This message is sent once for each dialog box, as

 // determined by the value returned from CPL_GETCOUNT.

 // lParam1 is the 0-based index of the dialog box.

 // lParam2 is a pointer to the NEWCPLINFO structure.

{

ASSERT(0 == lParam1);

ASSERT(lParam2);

NEWCPLINFO* lpNewCplInfo = (NEWCPLINFO *) lParam2;

if (lpNewCplInfo)

{

 lpNewCplInfo->dwSize = sizeof(NEWCPLINFO);

 lpNewCplInfo->dwFlags = 0;

 lpNewCplInfo->dwHelpContext = 0;

 lpNewCplInfo->lData = 0;

 lpNewCplInfo->hIcon = LoadIcon(AfxGetInstanceHandle(),MAKEINTRESOURCE(138));

_tcscpy(lpNewCplInfo->szName, TEXT("Power On Password"));

_tcscpy(lpNewCplInfo->szInfo, TEXT("Power On Password for PDA's"));

_tcscpy(lpNewCplInfo->szHelpFile, _T(""));

 return 0;

}

return 1; // Nonzero value means CPlApplet failed.

}

 case CPL_DBLCLK:

 {

//GET CURRENT TIME

BOOL Active;

CPasswordDlg dlg;

CPasswordDlg2 dlg2;

CPasswordDlg3 dlg3;

CPasswordDlg5 dlg5;

CPasswordDlgMsg1 Msg1;

CPasswordDlgMsg2 Msg2;

CPasswordDlgMsg3 Msg3;

CSTPasswordManager CSTP;

CRegKey key;

CControlPnl Pnl;

_TCHAR PowerOnPassword[128];

_TCHAR PasswordRegKey[128];

_TCHAR PasswordRegValue[128];

_TCHAR PasswordRegValue2[128];

DWORD ErrorCount;

_tcscpy(PowerOnPassword,TEXT(""));

_tcscpy(PasswordRegKey,TEXT("ControlPanel\\Password"));

_tcscpy(PasswordRegValue,TEXT("ErrorCount"));

_tcscpy(PasswordRegValue2,TEXT("FailureTime"));

CString CurrentTime = "";

CString FailureTime = "";

ErrorCount = 0;

SipShowIM(SIPF_ON);

CurrentTime = CPasswordApp::GetTime();

ErrorCount = CPasswordApp::CheckRegistry();

Active = CSTP.GetPasswordActive();

if (Active)

{

if ((ErrorCount == 0) || (ErrorCount == 1) || (ErrorCount == 2))

{

int nResponse = dlg3.DoModal();

if (nResponse == IDOK)

{

ErrorCount=0;

CPasswordApp::SetRegistry(ErrorCount,PasswordRegValue);

int nResponse = dlg5.DoModal();

while (nResponse != IDOK)

{

nResponse=dlg5.DoModal();

}

}

else

{

ErrorCount = ErrorCount + 1;

CPasswordApp::SetRegistry(ErrorCount,PasswordRegValue);

while ((nResponse != IDOK) && ((ErrorCount == 0) || (ErrorCount == 1) || (ErrorCount == 2)))

{

nResponse=dlg3.DoModal();

if (nResponse == IDOK)

{

ErrorCount=0;

CPasswordApp::SetRegistry(ErrorCount,PasswordRegValue);

int nResponse = dlg5.DoModal();

while (nResponse != IDOK)

{

nResponse=dlg5.DoModal();

}

}

else

{

ErrorCount = ErrorCount + 1;

CPasswordApp::SetRegistry(ErrorCount,PasswordRegValue);

}

}

if (ErrorCount == 3) nResponse=Msg1.DoModal();

}

}

if (ErrorCount == 3)

{

int nResponse = dlg3.DoModal();

if (nResponse ==IDOK)

{

ErrorCount=0;

CPasswordApp::SetRegistry(ErrorCount,PasswordRegValue);

int nResponse = dlg5.DoModal();

while (nResponse != IDOK)

{

nResponse=dlg5.DoModal();

}

}

else

{

nResponse=Msg2.DoModal();

}

}

if (ErrorCount == 4)

{

int nResponse = dlg3.DoModal();

if (nResponse ==IDOK)

{

ErrorCount=0;

CPasswordApp::SetRegistry(ErrorCount,PasswordRegValue);

int nResponse = dlg5.DoModal();

while (nResponse != IDOK)

{

nResponse=dlg5.DoModal();

}

}

else

{

ErrorCount = ErrorCount + 1;

CPasswordApp::SetRegistry(ErrorCount,PasswordRegValue);

nResponse = Msg3.DoModal();

}

}

if (ErrorCount == 5)

{

int nResponse = Msg3.DoModal();

}

}

else

{

int nResponse = dlg2.DoModal();

while (nResponse != IDOK)

{

nResponse=dlg2.DoModal();

}

}

return 0;

 }

 case CPL_STOP:

 // Called once for each dialog box. Used for cleanup.

 case CPL_EXIT:

 // Called only once for the application. Used for cleanup.

 default:

 return 0;

 }

 return 1; // CPlApplet failed.

} // CPlApplet

LPTSTR APIENTRY PromptForPasswd(HWND
hwndParent, BOOL fTightSecurity)

{

AFX_MANAGE_STATE(AfxGetStaticModuleState());

CPasswordDlg dlg;

CPasswordDlg2 dlg2;

CPasswordDlgMsg1 Msg1;

CPasswordDlgMsg2 Msg2;

CPasswordDlgMsg3 Msg3;

CPasswordDlgMsg4 Msg4;

CSTPasswordManager CSTP;

CRegKey key;

CControlPnl Pnl;

_TCHAR PasswordRegKey[128];

_TCHAR PasswordRegValue[128];

_TCHAR PasswordRegValue2[128];

DWORD ErrorCount;

_TCHAR *PowerOnPassword=NULL;//to return the password

_tcscpy(PasswordRegKey,TEXT("ControlPanel\\Password"));

_tcscpy(PasswordRegValue,TEXT("ErrorCount"));

_tcscpy(PasswordRegValue2,TEXT("FailureTime"));

__int64 FailureTime = 0;

__int64 CurrentTime = 0;

ErrorCount = 0;

// Convert CTime to FILETIME

CTime time(CTime::GetCurrentTime());

SYSTEMTIME timeDest;

time.GetAsSystemTime(timeDest);

::SystemTimeToFileTime(&timeDest, (FILETIME*)&CurrentTime);

ErrorCount = CPasswordApp::CheckRegistry();

FailureTime = CPasswordApp::GetFailureTime();

Msg4.Difference = 0;

Msg4.Difference = CurrentTime - FailureTime;

Msg4.Difference = Msg4.Difference/10000000;

Msg4.Difference = Msg4.Difference/60;

int nResponse;

if ((ErrorCount == 0) || (ErrorCount == 1) || (ErrorCount == 2))

{

nResponse = dlg.DoModal();

if (nResponse == IDOK)

{

ErrorCount=0;

FailureTime = 0;

CPasswordApp::SetRegistry(ErrorCount,PasswordRegValue);

PowerOnPassword = (TCHAR*)LocalAlloc(0, sizeof(TCHAR)*lstrlen(dlg.DlgPowerOnPassword) + 1);

_tcscpy(PowerOnPassword, dlg.DlgPowerOnPassword);

return PowerOnPassword;

}

else

{

ErrorCount = ErrorCount + 1;

CPasswordApp::SetRegistry(ErrorCount,PasswordRegValue);

while ((nResponse != IDOK) && ((ErrorCount == 0) || (ErrorCount == 1) || (ErrorCount == 2)))

{

nResponse=dlg.DoModal();

if (nResponse == IDOK)

{

ErrorCount=0;

FailureTime = 0;

CPasswordApp::SetRegistry(ErrorCount,PasswordRegValue);

CPasswordApp::SetRegistryFailure(FailureTime,PasswordRegValue2);

PowerOnPassword = (TCHAR*)LocalAlloc(0, sizeof(TCHAR)*lstrlen(dlg.DlgPowerOnPassword) + 1);

_tcscpy(PowerOnPassword, dlg.DlgPowerOnPassword);

return PowerOnPassword;

}

else

{

ErrorCount = ErrorCount + 1;

}

}

CPasswordApp::SetRegistry(ErrorCount,PasswordRegValue);

CPasswordApp::SetRegistryFailure(CurrentTime,PasswordRegValue2);

nResponse=Msg1.DoModal();

}

}

if (ErrorCount == 3)

{

if (Msg4.Difference < 30)

{

nResponse=Msg4.DoModal();

}

nResponse = dlg.DoModal();

if (nResponse ==IDOK)

{

ErrorCount=0;

FailureTime = 0;

CPasswordApp::SetRegistry(ErrorCount,PasswordRegValue);

CPasswordApp::SetRegistryFailure(FailureTime,PasswordRegValue2);

PowerOnPassword = (TCHAR*)LocalAlloc(0, sizeof(TCHAR)*lstrlen(dlg.DlgPowerOnPassword) + 1);

_tcscpy(PowerOnPassword, dlg.DlgPowerOnPassword);

return PowerOnPassword;

}

else

{

ErrorCount = ErrorCount + 1;

CPasswordApp::SetRegistry(ErrorCount,PasswordRegValue);

CPasswordApp::SetRegistryFailure(CurrentTime,PasswordRegValue2);

nResponse=Msg2.DoModal();

}

}

if (ErrorCount == 4)

{

if (Msg4.Difference < 30)

{

nResponse=Msg4.DoModal();

}

int nResponse = dlg.DoModal();

if (nResponse ==IDOK)

{

ErrorCount=0;

FailureTime = 0;

CPasswordApp::SetRegistry(ErrorCount,PasswordRegValue);

CPasswordApp::SetRegistryFailure(FailureTime,PasswordRegValue2);

PowerOnPassword = (TCHAR*)LocalAlloc(0, sizeof(TCHAR)*lstrlen(dlg.DlgPowerOnPassword) + 1);

_tcscpy(PowerOnPassword, dlg.DlgPowerOnPassword);

return PowerOnPassword;

}

else

{

ErrorCount = ErrorCount + 1;

CPasswordApp::SetRegistry(ErrorCount,PasswordRegValue);

CPasswordApp::SetRegistryFailure(CurrentTime,PasswordRegValue2);

nResponse = Msg3.DoModal();

}

}

if ((ErrorCount != 0) && (ErrorCount != 1) && (ErrorCount != 2) && (ErrorCount != 3) && (ErrorCount != 4))

{

int nResponse = Msg3.DoModal();

}

dlg.DoModal();

PowerOnPassword = (TCHAR*)LocalAlloc(0, sizeof(TCHAR)*lstrlen(dlg.DlgPowerOnPassword) + 1);

_tcscpy(PowerOnPassword, dlg.DlgPowerOnPassword);

return PowerOnPassword;

}

Password.cpp

// Password.cpp : Defines the class behaviors for the application.

//

#include "stdafx.h"

#include <Afx.h>

#include "Password.h"

#include "PasswordDlg.h"

#include "PasswordDlg2.h"

#include "PasswordDlgMsg1.h"

#include "PasswordDlgMsg2.h"

#include "PasswordDlgMsg3.h"

#include "STPasswordManager.h"

#include <atlbase.h>

#include <Afxdisp.h>

#include <Time.h>

#include <TCHAR.H>

#include <winioctl.h>

#include <Winbase.h.>

#define IOCTL_HAL_REBOOT CTL_CODE(FILE_DEVICE_HAL, 15, METHOD_BUFFERED, FILE_ANY_ACCESS)

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

///

// CPasswordApp

BEGIN_MESSAGE_MAP(CPasswordApp, CWinApp)

//{{AFX_MSG_MAP(CPasswordApp)

// NOTE - the ClassWizard will add and remove mapping macros here.

// DO NOT EDIT what you see in these blocks of generated code!

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

///

// CPasswordApp construction

CPasswordApp::CPasswordApp()

//: CWinApp()

{

// TODO: add construction code here,

// Place all significant initialization in InitInstance

}

///

// The one and only CPasswordApp object

CPasswordApp theApp;

///

// CPasswordApp initialization

extern "C" __declspec(dllimport)void SetCleanRebootFlag(void);

extern "C" __declspec(dllimport) BOOL KernelIoControl(

DWORD dwIoControlCode,

LPVOID lpInBuf,

DWORD nInBufSize,

LPVOID lpOutBuf,

DWORD nOutBufSize,

LPDWORD lpBytesReturned);

BOOL CPasswordApp::ResetPocketPC()

{

return KernelIoControl(IOCTL_HAL_REBOOT, NULL, 0, NULL, 0, NULL);

}

BOOL CPasswordApp::HardResetPocketPC()

{

SetCleanRebootFlag();

return KernelIoControl(IOCTL_HAL_REBOOT, NULL, 0, NULL, 0, NULL);

}

CString CPasswordApp::GetTime()

{

CString CurrentTime = "";

int Year = COleDateTime::GetCurrentTime().GetYear();

int Month = COleDateTime::GetCurrentTime().GetMonth();

int Day = COleDateTime::GetCurrentTime().GetDay();

int Hour = COleDateTime::GetCurrentTime().GetHour();

int Minute = COleDateTime::GetCurrentTime().GetMinute();

int Second = COleDateTime::GetCurrentTime().GetSecond();

CurrentTime.Format(_T("%d,%d,%d,%d,%d,%d"),Year,Month,Day,Hour,Minute,Second);

return CurrentTime;

}

DWORD CPasswordApp::CheckRegistry()

{

CRegKey key;

_TCHAR PasswordRegKey[128];

_TCHAR PasswordRegValue[128];

_TCHAR PasswordRegValue2[128];

_TCHAR PasswordRegValue3[128];

_TCHAR PasswordRegValue4[128];

_TCHAR BioDetectFile[128];

__int64 FailureTime;

DWORD ErrorCount;

_TCHAR Password[128];

_TCHAR Version[128];

_tcscpy(PasswordRegKey,TEXT("ControlPanel\\Password"));

_tcscpy(PasswordRegValue,TEXT("ErrorCount"));

_tcscpy(PasswordRegValue2,TEXT("Redirect"));

_tcscpy(PasswordRegValue3,TEXT("Version"));

_tcscpy(PasswordRegValue4,TEXT("FailureTime"));

_tcscpy(BioDetectFile,TEXT("\\Windows\\StartUp\\BioDetect.lnk"));

ErrorCount = 0;

_TCHAR testmessage[128];

_tcsncpy(testmessage,_T(""),128);

FailureTime = 0;

swprintf(testmessage, _T("%d"),FailureTime);

_tcscpy(Password,TEXT("\\Windows\\password.cpl"));

_tcscpy(Version,TEXT("1.0.0.9"));

CFile FF;

CFileStatus status;

if(FF.GetStatus(BioDetectFile,status)) // A virtual member function.

 {

if(DeleteFile(BioDetectFile)) // A virtual member function.

 {

//MessageBox(NULL,TEXT("FILE DELETED"),_T("Power On Password"),MB_OK);

 }

}

if (key.Open(HKEY_LOCAL_MACHINE, PasswordRegKey) != ERROR_SUCCESS)

{

MessageBox(NULL,TEXT("UNABLE TO OPEN REGISTRY"),_T("Power On Password"),MB_OK);

}

else

{

//If Reading ErrorCount is Successfull

DWORD dwCount=sizeof(ErrorCount);

if (::RegQueryValueEx(key.m_hKey, PasswordRegValue, NULL, NULL, (BYTE*)&ErrorCount, &dwCount) != ERROR_SUCCESS)

{

if (key.SetValue(ErrorCount,PasswordRegValue) != ERROR_SUCCESS)

{

//If Setting ErrorCount fails exit.

MessageBox(NULL,TEXT("UNABLE TO RESET ERRORCOUNT"),_T("Power On Password"),MB_OK);

//return FALSE;

}

if (key.SetValue(Password,PasswordRegValue2) != ERROR_SUCCESS)

{

//If Setting ErrorCount fails exit.

MessageBox(NULL,TEXT("UNABLE TO RESET REDIRECT"),_T("Power On Password"),MB_OK);

//return FALSE;

}

if (key.SetValue(Version,PasswordRegValue3) != ERROR_SUCCESS)

{

//If Setting ErrorCount fails exit.

MessageBox(NULL,TEXT("UNABLE TO RESET REDIRECT"),_T("Power On Password"),MB_OK);

//return FALSE;

}

if (RegSetValueEx(key.m_hKey, PasswordRegValue4, 0, REG_BINARY, (BYTE*)&FailureTime, sizeof(FailureTime)) != ERROR_SUCCESS)

{

//If Setting ErrorCount fails exit.

MessageBox(NULL,TEXT("UNABLE TO RESET REDIRECT"),_T("Power On Password"),MB_OK);

//return FALSE;

}

}

}

return ErrorCount;

}

__int64 CPasswordApp::GetFailureTime()

{

CRegKey key;

_TCHAR PasswordRegKey[128];

_TCHAR PasswordRegValue[128];

__int64 FailureTime = 0;

_tcscpy(PasswordRegKey,TEXT("ControlPanel\\Password"));

_tcscpy(PasswordRegValue,TEXT("FailureTime"));

 if (key.Open(HKEY_LOCAL_MACHINE, PasswordRegKey) != ERROR_SUCCESS)

{

MessageBox(NULL,TEXT("UNABLE TO OPEN REGISTRY"),_T("Power On Password"),MB_OK);

//return FALSE;

}

else

{

DWORD dwCount = sizeof(FailureTime); //max amount of bufferspace

if (::RegQueryValueEx(key.m_hKey, PasswordRegValue,NULL,NULL, (BYTE*)&FailureTime, &dwCount) != ERROR_SUCCESS)

{

MessageBox(NULL,TEXT("UNABLE TO RETURN FAILURE TIME"),_T("Power On Password"),MB_OK);

}

}

return FailureTime;

}

void CPasswordApp::SetRegistry(DWORD ErrorCount,_TCHAR PasswordRegValue[128])

{

CRegKey key;

_TCHAR PasswordRegKey[128];

_tcscpy(PasswordRegKey,TEXT("ControlPanel\\Password"));

 if (key.Open(HKEY_LOCAL_MACHINE, PasswordRegKey) != ERROR_SUCCESS)

{

MessageBox(NULL,TEXT("UNABLE TO OPEN REGISTRY"),_T("Power On Password"),MB_OK);

//return FALSE;

}

else

{

key.SetValue(ErrorCount,PasswordRegValue);

}

}

void CPasswordApp::SetRegistryFailure(__int64 CurrentTime,_TCHAR PasswordRegValue[128])

{

CRegKey key;

_TCHAR PasswordRegKey[128];

_tcscpy(PasswordRegKey,TEXT("ControlPanel\\Password"));

if (key.Open(HKEY_LOCAL_MACHINE, PasswordRegKey) != ERROR_SUCCESS)

{

MessageBox(NULL,TEXT("UNABLE TO OPEN REGISTRY"),_T("Power On Password"),MB_OK);

//return FALSE;

}

else

{

RegSetValueEx(key.m_hKey, PasswordRegValue, 0, REG_BINARY, (BYTE*)&CurrentTime, sizeof(CurrentTime));

}

}

PasswordDlg.cpp

// PasswordDlg.cpp : implementation file

//

#include "stdafx.h"

#include "Password.h"

#include "PasswordDlg.h"

#include "PasswordDlg2.h"

#include "STPasswordManager.h"

#include <TCHAR.H>

#include <SIPAPI.H>

#include "resource.h"

#include <AYGShell.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

int bSipUp_Glob;

///

// CPasswordDlg dialog

CPasswordDlg::CPasswordDlg(CWnd* pParent /*=NULL*/)

: CDialog(CPasswordDlg::IDD, pParent)

{

//{{AFX_DATA_INIT(CPasswordDlg)

// NOTE: the ClassWizard will add member initialization here

//}}AFX_DATA_INIT

}

void CPasswordDlg::DoDataExchange(CDataExchange* pDX)

{

CDialog::DoDataExchange(pDX);

//{{AFX_DATA_MAP(CPasswordDlg)

// NOTE: the ClassWizard will add DDX and DDV calls here

//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CPasswordDlg, CDialog)

//{{AFX_MSG_MAP(CPasswordDlg)

ON_WM_TIMER()

//}}AFX_MSG_MAP

ON_MESSAGE(WM_USER+10,OnDoIt)

END_MESSAGE_MAP()

///

// CPasswordDlg message handlers

BOOL CPasswordDlg::OnInitDialog()

{

// Set the icon for this dialog. The framework does this automatically

// when the application's main window is not a dialog

SetIcon(m_hIcon, TRUE);

// Set big icon

SetIcon(m_hIcon, FALSE);

// Set small icon

// TODO: Add extra initialization here.

 //::CommandBar_Show(m_pWndEmptyCB->m_hWnd, FALSE);

 // SHFullScreen fails if dialog box is not foreground.

SetForegroundWindow();

//SHFullScreen(m_hWnd, SHFS_HIDETASKBAR | SHFS_HIDESIPBUTTON | SHFS_HIDESTARTICON);

SHFullScreen(m_hWnd, SHFS_SHOWSIPBUTTON | SHFS_HIDESTARTICON);

 // Resize the window over the taskbar area.

CDialog::OnInitDialog();

CenterWindow(GetDesktopWindow());
// center to the hpc screen

// TODO: Add extra initialization here

PostMessage(WM_USER+10,0,0);

CWnd::SetTimer(1,500,NULL);

return TRUE; // return TRUE unless you set the focus to a control

}

void CPasswordDlg::OnOK()

{

// TODO: Add extra validation here

BOOL res;

DlgPowerOnPassword[0]=0;

int bufsize = 20;

PasswordCheckResult = 0;

_TCHAR Message[128];

_TCHAR ApplicationTitle[128];

Message[0] = 0;

CWnd::KillTimer(1);

_tcscpy(ApplicationTitle,TEXT("POWER ON PASSWORD"));

CSTPasswordManager CSTP;

CPasswordDlg2 dlg2;

CPasswordDlg::GetDlgItemText(IDC_EDIT1,DlgPowerOnPassword,bufsize);

res = CSTP.CheckPassword(DlgPowerOnPassword);

if (res)

{

PasswordCheckResult = CSTP.PasswordValidation(DlgPowerOnPassword);

if (PasswordCheckResult !=0)

{

_tcscpy(Message,TEXT("PASSWORD INVALID PLEASE RESET"));

CDialog::OnOK();

}

else

{

CDialog::OnOK();

}

}

else

{

_tcscpy(Message,TEXT("PASSWORD INCORRECT"));

MessageBox(Message,ApplicationTitle,MB_OK);

CDialog::OnCancel();

}

CPasswordDlg::UL_RaiseSIP(0);

}

afx_msg LONG CPasswordDlg::OnDoIt(UINT Cmd, LONG Parm)

{

CPasswordDlg::UL_RaiseSIP(1);

return 0;

}

void CPasswordDlg::OnTimer(UINT nIDEvent)

{

CPasswordDlg::UL_RaiseSIP(1);

//return 0;

}

void CPasswordDlg::UL_RaiseSIP(BOOL bRaise)

{

// Find window class: "SipWndClass"

 CWnd *pWndKeyb ;

 if(pWndKeyb = CWnd::FindWindow(TEXT("SipWndClass"),NULL)) {

 if(bRaise)

 {

 if(!pWndKeyb->IsWindowVisible())

 {

 pWndKeyb->ShowWindow(SW_SHOW);

 bSipUp_Glob = TRUE; // show it. And not manually.

 }

 }

 else

 {

 if(bSipUp_Glob)

 {

 pWndKeyb->ShowWindow(SW_HIDE);

 bSipUp_Glob = FALSE;

 }

 } //endif(bRaise)

 } //endif(pWndKeyb)

}

 PasswordDlgMsg1.cpp
// PasswordDlgMsg1.cpp : implementation file

//

#include "stdafx.h"

#include "Password.h"

#include "PasswordDlgMsg1.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

///

// CPasswordDlgMsg1 dialog

CPasswordDlgMsg1::CPasswordDlgMsg1(CWnd* pParent /*=NULL*/)

: CDialog(CPasswordDlgMsg1::IDD, pParent)

{

//{{AFX_DATA_INIT(CPasswordDlgMsg1)

// NOTE: the ClassWizard will add member initialization here

//}}AFX_DATA_INIT

}

void CPasswordDlgMsg1::DoDataExchange(CDataExchange* pDX)

{

CDialog::DoDataExchange(pDX);

//{{AFX_DATA_MAP(CPasswordDlgMsg1)

// NOTE: the ClassWizard will add DDX and DDV calls here

//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CPasswordDlgMsg1, CDialog)

//{{AFX_MSG_MAP(CPasswordDlgMsg1)

// NOTE: the ClassWizard will add message map macros here

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

///

// CPasswordDlgMsg1 message handlers

void CPasswordDlgMsg1::OnOK()

{

CPasswordApp::ResetPocketPC();

}

 PasswordLogin.cpp

// PasswordLogin.cpp : implementation file

//

#include "stdafx.h"

#include "Password.h"

#include "PasswordLogin.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

///

// CPasswordLogin dialog

CPasswordLogin::CPasswordLogin(CWnd* pParent /*=NULL*/)

: CDialog(CPasswordLogin::IDD, pParent)

{

//{{AFX_DATA_INIT(CPasswordLogin)

// NOTE: the ClassWizard will add member initialization here

//}}AFX_DATA_INIT

}

void CPasswordLogin::DoDataExchange(CDataExchange* pDX)

{

CDialog::DoDataExchange(pDX);

//{{AFX_DATA_MAP(CPasswordLogin)

// NOTE: the ClassWizard will add DDX and DDV calls here

//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CPasswordLogin, CDialog)

//{{AFX_MSG_MAP(CPasswordLogin)

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

///

// CPasswordLogin message handlers

void CPasswordLogin::OnOK()

{

// TODO: Add extra validation here

CDialog::OnOK();

}

STPasswordManager.cpp

#include "stdafx.h"

#include "STPasswordManager.h"

#include <atlbase.h>

#include <aygshell.h>

#ifdef _DEBUG

#undef THIS_FILE

static char THIS_FILE[]=__FILE__;

#define new DEBUG_NEW

#endif

#define ACTIVE_FOLDER _T("ControlPanel\\Owner")

#define ACTIVE_KEY _T("PowrPass")

//

// Construction/Destruction

//

CSTPasswordManager::CSTPasswordManager()

{

m_hModule = ::LoadLibrary(_T("coredll.dll"));

ASSERT(m_hModule);

FARPROC pProc;

pProc = GetProcAddress(m_hModule, _T("SetPassword"));

m_procSetPassword = (SetPasswordProc*)pProc;

pProc = GetProcAddress(m_hModule, _T("SetPasswordActive"));

m_procSetPasswordActive = (SetPasswordActiveProc*)pProc;

}

CSTPasswordManager::~CSTPasswordManager()

{

if (m_hModule)

{

::FreeLibrary(m_hModule);

}

}

BOOL CSTPasswordManager::CheckPassword(const CString &strPassword)

{

LPTSTR lpPassword;

if ((strPassword==_T("")) || (strPassword.IsEmpty()))

{

lpPassword = NULL;

} else {

lpPassword = (LPTSTR)(LPCTSTR)strPassword;

}

BOOL bResult = m_procSetPassword(lpPassword, lpPassword);

return bResult;

}

BOOL CSTPasswordManager::SetPassword(const CString &strOldPassword, const CString &strNewPassword)

{

LPTSTR lpOldPassword;

if ((strOldPassword==_T("")) || (strOldPassword.IsEmpty()))

{

lpOldPassword = NULL;

} else {

lpOldPassword = (LPTSTR)(LPCTSTR)strOldPassword;

}

LPTSTR lpNewPassword;

if ((strNewPassword==_T("")) || (strNewPassword.IsEmpty()))

{

lpNewPassword = NULL;

} else

{

lpNewPassword = (LPTSTR)(LPCTSTR)strNewPassword;

}

BOOL bResult = m_procSetPassword(lpOldPassword, lpNewPassword);

return bResult;

}

BOOL CSTPasswordManager::SetPasswordAndActive(const CString &strOldPassword, const CString &strNewPassword, BOOL bActive)

{

BOOL bResult = SetPassword(strOldPassword, strNewPassword);

if (bResult)

{

bResult = SetPasswordActive(strNewPassword, bActive);

}

return bResult;

}

BOOL CSTPasswordManager::SetPasswordActive(const CString &strCurrentPassword, BOOL bActive)

{

LPTSTR lpCurrentPassword;

if ((strCurrentPassword==_T("")) || (strCurrentPassword.IsEmpty()))

{

lpCurrentPassword = NULL;

} else {

lpCurrentPassword = (LPTSTR)(LPCTSTR)strCurrentPassword;

}

BOOL bResult = m_procSetPasswordActive(bActive, lpCurrentPassword); //NOT WORKING

if (!bResult)

{

return FALSE;

}

CRegKey key;

if (key.Open(HKEY_CURRENT_USER, ACTIVE_FOLDER) != ERROR_SUCCESS)

{

if (key.Create(HKEY_CURRENT_USER, ACTIVE_FOLDER) != ERROR_SUCCESS)

{

return FALSE;

}

}

BYTE pData[1];

pData[0] = (BYTE)bActive;

if (RegSetValueEx(key.m_hKey, ACTIVE_KEY, 0, REG_BINARY, pData, 1) != ERROR_SUCCESS)

{

return FALSE;

};

return TRUE;

}

BOOL CSTPasswordManager::GetPasswordActive()

{

CRegKey key;

if (key.Open(HKEY_CURRENT_USER, ACTIVE_FOLDER) != ERROR_SUCCESS)

{

//If error return FALSE

return FALSE;

}

DWORD dwCount = 0;

if (::RegQueryValueEx(key.m_hKey, ACTIVE_KEY, NULL, NULL, NULL, &dwCount) != ERROR_SUCCESS)

{

//If error return FALSE

return FALSE;

}

if (dwCount > 1000)

{

// just a precaution for tampering

//If error return FALSE

return FALSE;

}

BYTE* pBuffer = new BYTE[dwCount];

if (::RegQueryValueEx(key.m_hKey, ACTIVE_KEY, NULL, NULL, pBuffer, &dwCount) != ERROR_SUCCESS)

{

delete pBuffer;

//If error return FALSE

return FALSE;

}

BOOL bResult = (BOOL)(*pBuffer);

delete pBuffer;

return bResult;

}

//

// This function checks the character string against the password rules,

// i.e. Ensure that the Password is valid as per Guidelines.

//

int CSTPasswordManager::PasswordValidation(_TCHAR *password)

{

_TCHAR Letters[] = _T("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ");

_TCHAR Numerals[] = _T("0123456789");

_TCHAR Special[] = _T("`!@$%^&*()-_=+[];:'\",<.>/?");

_TCHAR ValidChars[] = _T("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789`!@$%^&*()-_=+[];:'\",<.>/?");

_TCHAR * pchA;

_TCHAR * pchB;

_TCHAR * pchC;

int i;

/*Rule: Must be at least 8 and less than 15 characters long*/

if ((_tcslen(password) < 8) || (_tcslen(password) > 14)) return 1;

/*Rule: Must not begin with an exclamation point [!] or a question mark [?]*/

if (password[0]=='!' || password[0]=='?') return 2;

/*Rule: Must not contain any spaces*/

if (_tcschr(password,' ')) return 3;

/*Rule: Must contain only letters, numerals and some special characters*/

i=0;

while(password[i])

{

if (_tcschr(ValidChars , password[i]) == NULL)

return 4;

i++;

}

/*Rule: First three characters cannot be the same*/

if ((password[0] == password[1]) && (password[1] == password[2])) return 5;

/*Rule: Must contain at least one alpha, at least one numeric and at least one special character*/

pchA = _tcspbrk(password,Letters);

pchB = _tcspbrk(password,Numerals);

pchC = _tcspbrk(password,Special);

if ((pchA == NULL) || (pchB == NULL) || (pchC == NULL)) return 6;

/*Rule: Must not be the same as one of your previous 8 passwords*/

// Not implemented yet

return 0; //String passed all rules

}

//

// This function checks the character string against the password rules,

// i.e. Ensure that the Password is valid as per Guidelines.

//

int CSTPasswordManager::PinValidation(_TCHAR *passwordOLD,_TCHAR *password)

{

_TCHAR Letters[] = _T("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ");

_TCHAR Numerals[] = _T("0123456789");

_TCHAR Special[] = _T("`!@$%^&*()-_=+[];:'\",<.>/?");

_TCHAR ValidChars[] = _T("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789`!@$%^&*()-_=+[];:'\",<.>/?");

int i;

/*Rule: Must be at 6 characters long*/

if ((_tcslen(password) != 6)) return 7;

/*Rule: Must not contain any spaces*/

if (_tcschr(password,' ')) return 8;

/*Rule: Must contain only numbers*/

i=0;

while(password[i])

{

if (_tcschr(Numerals , password[i]) == NULL)

return 9;

i++;

}

/*Rule: First Three characters cannot be the same*/

if ((password[0] == password[1]) && (password[1] == password[2])) return 10;

/*Rule: Must not be sequential*/

if ((password[0] == (password[1] - 1)) && (password[1] == (password[2] - 1)))

return 11;

if ((password[0] == (password[1] + 1)) && (password[1] == (password[2] + 1)))

return 12;

/*Rule: Must not be the same as one of your previous 8 passwords*/

// Not implemented yet

if (_tcscmp(passwordOLD, password) == 0)

return 13;

return 0; //String passed all rules

}

//

// This function decodes the error code from the Validation function and informs the

// user what is wrong with their password.

//

void CSTPasswordManager::DecodeError(int ErrorCode)

{

if (ErrorCode == 1) MessageBox(NULL,_T("Rule: Must be at least 8 and less than 15 characters long."),_T("Password"),MB_OK);

if (ErrorCode == 2) MessageBox(NULL,_T("Rule: Must not begin with an exclamation point [!] or a question mark [?]."),_T("Password"),MB_OK);

if (ErrorCode == 3) MessageBox(NULL,_T("Rule: Must not contain any spaces."),_T("Password"),MB_OK);

if (ErrorCode == 4) MessageBox(NULL,_T("Rule: Must contain only letters, numerals and some special characters."),_T("Password"),MB_OK);

if (ErrorCode == 5) MessageBox(NULL,_T("Rule: First three characters cannot be the same."),_T("Password"),MB_OK);

if (ErrorCode == 6) MessageBox(NULL,_T("Rule: Must contain at least one alpha, at least one numeric and at least one special character."),_T("Password"),MB_OK);

if (ErrorCode == 7) MessageBox(NULL,_T("Rule: Pin Must be 6 numbers long."),_T("Password"),MB_OK);

if (ErrorCode == 8) MessageBox(NULL,_T("Rule: Pin Must not contain any spaces."),_T("Password"),MB_OK);

if (ErrorCode == 9) MessageBox(NULL,_T("Rule: Pin Must contain only numbers."),_T("Password"),MB_OK);

if (ErrorCode == 10) MessageBox(NULL,_T("Rule: First 3 Numbers must not be the same."),_T("Password"),MB_OK);

if (ErrorCode == 11) MessageBox(NULL,_T("Rule: First 3 Numbers must not be sequential."),_T("Password"),MB_OK);

if (ErrorCode == 12) MessageBox(NULL,_T("Rule: First 3 Numbers must not be reverse sequential."),_T("Password"),MB_OK);

if (ErrorCode == 13) MessageBox(NULL,_T("Rule: You can not reuse the last Pin."),_T("Password"),MB_OK);

}

//

// This function ensures that we have control of the desktop password,

// i.e. the password hasn't been set already by another password

// mechanism.

//

BOOL CSTPasswordManager::PasswordHaveControl()

{

_tcscpy(PowerOnPassword,TEXT("password"));

if (CheckPassword("0"))

return true;

if (CheckPassword(PowerOnPassword))

return true;

MessageBox(
NULL,

TEXT(
"Another security module has control ")

TEXT(
"of the password. The password must be ")

TEXT(
"removed before installing the 'UUPOP' ")

TEXT(
"security module."),

_T("Password"),

MB_OK|MB_ICONEXCLAMATION|MB_SETFOREGROUND);

return false;

}

//

// Save our security information, activate the desktop password,

// and turn on power-on security.

//

BOOL CSTPasswordManager::PasswordEnableSecurity(

HWND
hwnd,

BYTE*
pData,

int

nSize)

{

HKEY
hkey;

if (!PasswordHaveControl())

return FALSE;

//

// Save doodle info

//

RegCreateKeyEx(HKEY_CURRENT_USER, PasswordRegKey, 0, 0, 0, 0, 0, &hkey, 0);

RegSetValueEx(hkey, PasswordRegValue, 0, REG_BINARY, pData, nSize);

RegCloseKey(hkey);

//

// Enable password protection.

//

if (CheckPassword(""))

SetPassword("", PowerOnPassword);

SetPasswordActive(PowerOnPassword,TRUE);

//

// Enable power-on dialog.

//

RegCreateKeyEx(HKEY_CURRENT_USER, TEXT("ControlPanel\\Owner"), 0, 0, 0, 0, 0, &hkey, 0);

RegSetValueEx(hkey, TEXT("Password"), 0, REG_BINARY, (CONST BYTE*)"\x01", 1);

RegCloseKey(hkey);

return TRUE;

}

//

// Disable desktop password and power-on security.

//

BOOL CSTPasswordManager::PasswordClearSecurity()

{

HKEY
hkey;

//

// Disable password protection.

//

SetPasswordActive(PowerOnPassword,FALSE);

SetPassword(PowerOnPassword, "0");

//

// Disable power-on dialog.

//

RegCreateKeyEx(HKEY_CURRENT_USER, TEXT("ControlPanel\\Owner"), 0, 0, 0, 0, 0, &hkey, 0);

RegSetValueEx(hkey, TEXT("Password"), 0, REG_BINARY, (CONST BYTE*)"\x00", 1);

RegCloseKey(hkey);

return TRUE;

}

//

// Get current security doodle from the registry.

//

void* CSTPasswordManager::PasswordGetSecurity()

{

HKEY
hkey;

BYTE*
pData;

DWORD
dwData = 0;

RegCreateKeyEx(HKEY_CURRENT_USER, PasswordRegKey, 0, 0, 0, 0, 0, &hkey, 0);

RegQueryValueEx(hkey, PasswordRegValue, 0, 0, 0, &dwData);

if (dwData)

{

pData = (BYTE*)LocalAlloc(0, dwData);

RegQueryValueEx(hkey, PasswordRegValue, 0, 0, pData, &dwData);

}

RegCloseKey(hkey);

return dwData ? pData : 0;

}

Appendix F – PDA Client Enroller – Code
CertInstall.cs

using System;

using System.IO;

using PInvokeLibrary;

using System.Net;

using System.Web.Services.Protocols;

using System.Runtime.InteropServices;

using System.Collections;

using System.Security.Cryptography.X509Certificates;

using PDAClient.PKIWebService;

namespace PDAClient

{

/// <summary>

/// Summary description for CertInstall.

/// </summary>

///

#region CAPI related constants

public enum EncodingType

{

CRYPT_ASN_ENCODING

= 0x00000001,

CRYPT_NDR_ENCODING

= 0x00000002,

X509_ASN_ENCODING

= 0x00000001,

X509_NDR_ENCODING

= 0x00000002,

PKCS_7_ASN_ENCODING

= 0x00010000,

PKCS_7_NDR_ENCODING

= 0x00020000,

MY_ENCODING

= X509_ASN_ENCODING | PKCS_7_ASN_ENCODING,

DEFAULT_ENCODING

= 0

};

#endregion

public class CertInstall

{

//string PDAUsername = null;

//string PDAPassword = null;

//string Domain = null;

//string DeviceID = null;

public string AppPath = "";

public StreamWriter myStream = null;

public StreamReader myStreamReader = null;

public PDAClient.PDAWebService.Service1 myService = new PDAClient.PDAWebService.Service1();

//public PDAClient.PKIWebService.RequestDisposition disposition = PDAClient.PKIWebService.RequestDisposition.CR_DISP_UNDER_SUBMISSION;

//public PDAClient.PKIWebService.CertRequiestService myPKIService = new PKIWebService.CertRequiestService(szUrl);

//PKIWebService.RequestDisposition srv = PKIWebService.CertRequiestService(szUrl);

//string base64P10CertReq = "-----BEGIN NEW CERTIFICATE REQUEST-----MIIFgwYJKoZIhvcNAQcCoIIFdDCCBXACAQMxCzAJBgUrDgMCGgUAMIIEBgYIKwYBBQUHDAKgggP4BIID9DCCA/AwXDBaAgECBggrBgEFBQcHCDFLMEkCAQAwAwIBATA/MD0GCSsGAQQBgjcVBwQwMC4GJisGAQQBgjcVCIfx7yiFu+x8hKGPKYe9hFGFpuFhgQCEj91bhe9qAgFkAgEEMIIDiqCCA4YCAQEwggN/MIIC6AIBADAAMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDRawapafLcfH1ja+gKYJfnub5bcfP8RSwMEG+zfoDaHTDHJyQeF3i/24GVtT+JIbFczk3BhQPYahUbyOLAwRYClSSgEO+z4f8DuvgsnR6NWdcqM1ksE+rs/3GFeWNVfzDXpiNGZjeQKyd4mmOLrH8pqddxhJqp+VkmKasvT4R2EwIDAQABoIICPTAaBgorBgEEAYI3DQIDMQwWCjUuMi4zNzkwLjIwVQYJKwYBBAGCNxUUMUgwRgIBAQwkc3Z1cmd1bi1kZXNrMS5hbXJ2bS5jb3Jwdm0uaW50ZWwuY29tDA1BTVJWTVxzdnVyZ3VuDAxJRVhQTE9SRS5FWEUwgcUGCSqGSIb3DQEJDjGBtzCBtDAOBgNVHQ8BAf8EBAMCBDAwRAYJKoZIhvcNAQkPBDcwNTAOBggqhkiG9w0DAgICAIAwDgYIKoZIhvcNAwQCAgCAMAcGBSsOAwIHMAoGCCqGSIb3DQMHMB0GA1UdDgQWBBR593uwGCsE48D/iBxd85ydiBQZvjA9BgkrBgEEAYI3FQcEMDAuBiYrBgEEAYI3FQiH8e8ohbvsfIShjymHvYRRhabhYYEAhI/dW4XvagIBZAIBBDCB/wYKKwYBBAGCNw0CAjGB8DCB7QIBAR5cAE0AaQBjAHIAbwBzAG8AZgB0ACAARQBuAGgAYQBuAGMAZQBkACAAQwByAHkAcAB0AG8AZwByAGEAcABoAGkAYwAgAFAAcgBvAHYAaQBkAGUAcgAgAHYAMQAuADADgYkAADANBgkqhkiG9w0BAQUFAAOBgQCjk+OJex7GRHh02X/hL1eEDvrz/VVs9Axgz+6CyVs0qJk2q2kMzU5AAntXKweRLZY7FXTzFxD2gTE1CnLK10SxhHStFl9cCHeCk5Kveo2AaZK5lj7RxVoGKIqo0jlztXKiZ/TbKwRjNZCpYWxrb7YXzYI4aFg2p2ICTzX0lDbh1jAAMAAxggFSMIIBTgIBA4AUefd7sBgrBOPA/4gcXfOcnYgUGb4wCQYFKw4DAhoFAKCBlTAXBgkqhkiG9w0BCQMxCgYIKwYBBQUHDAIwIwYJKoZIhvcNAQkEMRYEFF22vtW8Y496kYLPBPeqrQerIrzVMFUGCSsGAQQBgjcVFDFIMEYCAQEMJHN2dXJndW4tZGVzazEuYW1ydm0uY29ycHZtLmludGVsLmNvbQwNQU1SVk1cc3Z1cmd1bgwMSUVYUExPUkUuRVhFMA0GCSqGSIb3DQEBAQUABIGACuxyB9gHcUlJ6UnTk1Cpi2vf/eREC0RxGUHho39+vYZ6Y+dzBHmwS4bf0pgsauy5ZMJ+MD9i2to7IBwOfoHeTbk+vD/YSqrE8oSLqoq9gp0AG5VD+dApIGwimZyC+qi1hh0oFkpxVCiPGr4/dkyg1WUQqchJDam3+uNOF0M0sGU=-----END NEW CERTIFICATE REQUEST-----";

string PKCS12 = null;

//public static UUCERTLib.Class my;

CertificatesStoreCollector certStore = new CertificatesStoreCollector();

NetworkCredential creds;

//PKIWebService.RAWebService ThisServiceProxy = new PKIWebService.RAWebService();

PKCS10Creator myPKCS10Creator = new PKCS10Creator();

//public static CERT myCERT = new CERT("Cert.SFF");

public CertInstall()

{

//CertInstall Constructor

//Get Application Path

AppPath = Path.GetDirectoryName(

System.Reflection.Assembly.GetExecutingAssembly().GetName().CodeBase);

//Create/Open Text File

AppPath = AppPath + "\\PDAClientDEBUG.txt";

}

public CertInstall(string tempUser, string tempDomain, string tempUserPassword)

{

//CertInstall Constructor

//Get Application Path

AppPath = Path.GetDirectoryName(

System.Reflection.Assembly.GetExecutingAssembly().GetName().CodeBase);

//Create/Open Text File

AppPath = AppPath + "\\PDAClientDEBUG.txt";

creds = new NetworkCredential(tempUser,tempUserPassword,tempDomain);

myService.Credentials = creds;

}

/*

 * Function Name:
WriteLog

 * Parameters:

string Message

 *

 * Description:

This Function Prints string in Message to the log file defined

 *

in the constructor.

 *

 * Returns:

nothing

*/

public void WriteLog(string Message)

{

try

{

if (File.Exists(AppPath))

myStream = File.AppendText(AppPath);

else

myStream = File.CreateText(AppPath);

myStream.AutoFlush = true;

myStream.WriteLine(Message);

myStream.Close();

}

catch

{

}

}

/*

* Function Name:
GetDeviceID

* Parameters:

none

*

* Description:

This function queries the registry for the DeviceID

* Returns:

The correct DeviceID on Success

*

"" on Failure

*/

/*public string GetDeviceID()

{

DeviceID = "";

try

{

string keyName = "SOFTWARE\\UU\\IT Build Info";

string valueName = "DeviceID";

string stringResult = "";

Registry.GetStringValue(keyName,valueName,ref stringResult);

DeviceID = stringResult.Substring(0,stringResult.Length-1);

}

catch

{

DeviceID = "";

}

return DeviceID;

}*/

/*

* Function Name:
QueryPDAWebService

* Parameters:

string Username

*

string byref Message

*

* Description:

This Function gathers the parameters needed and makes

*

a call to the PDA Web Service function:

public bool GetPDAIdentity(string UserName, string DeviceID, int SessionID,

ref string PDAUserName, ref string Password, ref string Message)

*

If this returns "True" this function obtains the PDAUsername

*

and password of the AD Object created. If the above returns

*

false this function displays an error.

* Returns:

True on success

*

False on Failure

*/

public bool QueryPDAWebService(string Username,int SessionID)

{

return true;

}

/*

 * Function Name:
RequestCertificate

 * Parameters:

string Username

 *

string Domain

 *

string UserPassword

 *

string byref Message

 *

 * Description:

This Function Creates the Evidence String, PKCS#10 request,

 *

authenticates to the PKI WebService and installs the returned

 *

PKCS#12 string.

 * Returns:

True on success

 *

False on Failure

*/

public bool RequestCertificate(string Username,string UserPassword,string Domain, ref string Message)

{

string base64P10CertReq = "";

try

{

//string evidenceString = @"<Evidence><DeviceCredentials><id>"+Domain.ToString()+"\\"+PDAUsername.ToString()+"</id><password>"+PDAPassword.ToString()+"</password></DeviceCredentials></Evidence>";

//string evidenceString = @"<Evidence><DeviceCredentials><id>ger\pcanningpda1</id><password>comeon1.</password></DeviceCredentials></Evidence>";

//evidenceString = @"<Evidence><DeviceCredentials><id>amrvm\sfftest1</id><password>passw0rd!</password></DeviceCredentials></Evidence>";

//WriteLog("Evidence String Created Successfully.");

//Create PKCS#10 Request

myPKCS10Creator.commonName = Username.ToString();

base64P10CertReq = myPKCS10Creator.CreatePKCS10Request();

WriteLog("PKCS#10 String Created Successfully.");

try

{

//Make Request to CA Web Service

string strAttributes = "";

//string szUrl = "http://LEVZLAP/CertRequestSoapSrv/CertRequiestService.asmx";

//string strRawCertificate = null;

string strDisposition = null;

int requestId = 0;

//Create connection to PKI web service

PKIWebService.RequestDisposition disposition = PKIWebService.RequestDisposition.CR_DISP_UNDER_SUBMISSION;

PKIWebService.CertRequiestService srv = new PKIWebService.CertRequiestService();//szUrl);

//Submit PKCS#10 request to PKI web service

NetworkCredential creds = new NetworkCredential(Username,UserPassword,Domain);

srv.Credentials = creds;

disposition = srv.Submit(base64P10CertReq, strAttributes, out requestId, out strDisposition, out PKCS12);

if (PKCS12 != null)

{

PKCS12 = PKCS12.Replace("-----BEGIN CERTIFICATE-----\n","");

PKCS12 = PKCS12.Replace("\n-----END CERTIFICATE-----\n","");

WriteLog("Certificate Chain Obtained Successfully.");

return true;

}

else

{

WriteLog("Error: Unable to obtain Certificate Chain Successfully.");

return false;

}

}

catch (Exception mySoapException)

{

WriteLog("Error: There was a Soap Exception.");

WriteLog("Exception Value: "+mySoapException.Message.ToString());

return false;

}

}

catch

{

WriteLog("Error: Unable to Create PHCS#10 Request.");

return false;

}

}

public bool InstallCertificate()

{

Int32 store = 0;

string storeName = "MY";

bool fSystemStore = true;

try

{

store = certStore.OpenStore(storeName, fSystemStore);

}

catch(ApplicationException ex)

{

WriteLog("Error: Failed to open store "+storeName);

WriteLog("Error Description: "+ex.Message);

}

if (store == 0)

return false;

try

{

byte[] rawCertificateData = Convert.FromBase64String(PKCS12);

X509Certificate cert = new X509Certificate(rawCertificateData);

string IssuerName = cert.GetIssuerName();

return myPKCS10Creator.ImportCertificateBytesToHStore(store, fSystemStore, rawCertificateData, true);

}

catch(Exception ex)

{

WriteLog("Error Description: "+ex.Message);

return false;

}

}

public bool TestCertificate(string storeName, bool fSystemStore, ref string Message)

{

string IssuerName = "";

bool PrivateKey = false;

string UPName = "";

using (CertificatesStoreCollector certStore = new CertificatesStoreCollector())

{

Int32 store = 0;

try

{

store = certStore.OpenStore(storeName, fSystemStore);

}

catch(Exception ex)

{

Message = ex.Message;

WriteLog(ex.Message+"Failed to open store");

}

if (store == 0)

{

return false;

}

bool fListReady = false;

using (CertificateContextCollector certContext = new CertificateContextCollector(store))

{

foreach (X509Certificate crt in certContext)

{

IssuerName = crt.GetIssuerName();

WriteLog("IssuerName = "+IssuerName.ToString());

UPName = certContext.GetRDN();

//Changed to UUMAGEE from UU if test fails look here

if (UPName.IndexOf("UUMAGEE",0,UPName.Length)!=0)

{

WriteLog("Cert UPN = "+UPName.ToString());

PrivateKey = certContext.HasPrivateKey();

if (PrivateKey == true)

{

WriteLog("PrivateKey = "+PrivateKey.ToString());

fListReady = true;

}

}

}

}

if (!fListReady)

{

WriteLog("No certificates was found in the system store" + storeName);

return false;

}

else

{

WriteLog("Certificate was found in the system store" + storeName);

return true;

}

}

}

}

}

Install.cs

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Threading;

namespace PDAClient

{

/// <summary>

/// Summary description for Install.

/// </summary>

public class Install : System.Windows.Forms.Form

{

private System.Windows.Forms.Label label5;

private System.Windows.Forms.Label label4;

private System.Windows.Forms.Label label1;

private System.Windows.Forms.Label label2;

private System.Windows.Forms.Label label3;

private System.Windows.Forms.Label label6;

private System.Windows.Forms.Button button2;

private System.Windows.Forms.Button button1;

private System.Windows.Forms.MainMenu mainMenu1;

private System.Windows.Forms.PictureBox Success1;

private System.Windows.Forms.PictureBox Success2;

private System.Windows.Forms.PictureBox Success3;

private System.Windows.Forms.PictureBox Success4;

private System.Windows.Forms.PictureBox Failure1;

private System.Windows.Forms.PictureBox Failure2;

private System.Windows.Forms.PictureBox Failure3;

private System.Windows.Forms.PictureBox Failure4;

public string UserName;

public string Domain;

public string UserPassword;

public WriteLog myLog = new WriteLog();

public Install(string text1,string text2,string text3)

{

//

// Required for Windows Form Designer support

//

InitializeComponent();

//

// TODO: Add any constructor code after InitializeComponent call

//

UserName = text1.ToString();

Domain = text2.ToString();

UserPassword = text3.ToString();

}

/// <summary>

/// Clean up any resources being used.

/// </summary>

protected override void Dispose(bool disposing)

{

base.Dispose(disposing);

}

#region Windows Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

System.Resources.ResourceManager resources = new System.Resources.ResourceManager(typeof(Install));

this.label5 = new System.Windows.Forms.Label();

this.label4 = new System.Windows.Forms.Label();

this.label1 = new System.Windows.Forms.Label();

this.label2 = new System.Windows.Forms.Label();

this.label3 = new System.Windows.Forms.Label();

this.label6 = new System.Windows.Forms.Label();

this.button2 = new System.Windows.Forms.Button();

this.button1 = new System.Windows.Forms.Button();

this.mainMenu1 = new System.Windows.Forms.MainMenu();

this.Success1 = new System.Windows.Forms.PictureBox();

this.Success2 = new System.Windows.Forms.PictureBox();

this.Success3 = new System.Windows.Forms.PictureBox();

this.Success4 = new System.Windows.Forms.PictureBox();

this.Failure1 = new System.Windows.Forms.PictureBox();

this.Failure2 = new System.Windows.Forms.PictureBox();

this.Failure3 = new System.Windows.Forms.PictureBox();

this.Failure4 = new System.Windows.Forms.PictureBox();

//

// label5

//

this.label5.Font = new System.Drawing.Font("Comic Sans MS", 8.25F, System.Drawing.FontStyle.Bold);

this.label5.ForeColor = System.Drawing.Color.White;

this.label5.Location = new System.Drawing.Point(60, 32);

this.label5.Size = new System.Drawing.Size(120, 20);

this.label5.Text = "Certificate Installer";

//

// label4

//

this.label4.Font = new System.Drawing.Font("Comic Sans MS", 15.75F, System.Drawing.FontStyle.Bold);

this.label4.ForeColor = System.Drawing.Color.White;

this.label4.Location = new System.Drawing.Point(52, 8);

this.label4.Size = new System.Drawing.Size(136, 32);

this.label4.Text = "Secure PDA";

this.label4.ParentChanged += new System.EventHandler(this.label4_ParentChanged);

//

// label1

//

this.label1.Font = new System.Drawing.Font("Verdana", 8.25F, System.Drawing.FontStyle.Bold);

this.label1.ForeColor = System.Drawing.Color.White;

this.label1.Location = new System.Drawing.Point(8, 64);

this.label1.Size = new System.Drawing.Size(160, 24);

this.label1.Text = "Active Directory Information Checked:";

//

// label2

//

this.label2.Font = new System.Drawing.Font("Verdana", 8.25F, System.Drawing.FontStyle.Bold);

this.label2.ForeColor = System.Drawing.Color.White;

this.label2.Location = new System.Drawing.Point(8, 96);

this.label2.Size = new System.Drawing.Size(160, 20);

this.label2.Text = "Request Certificate:";

//

// label3

//

this.label3.Font = new System.Drawing.Font("Verdana", 8.25F, System.Drawing.FontStyle.Bold);

this.label3.ForeColor = System.Drawing.Color.White;

this.label3.Location = new System.Drawing.Point(8, 120);

this.label3.Size = new System.Drawing.Size(152, 20);

this.label3.Text = "Install Certificate:";

//

// label6

//

this.label6.Font = new System.Drawing.Font("Verdana", 8.25F, System.Drawing.FontStyle.Bold);

this.label6.ForeColor = System.Drawing.Color.White;

this.label6.Location = new System.Drawing.Point(8, 144);

this.label6.Size = new System.Drawing.Size(128, 20);

this.label6.Text = "Test Certificate:";

//

// button2

//

this.button2.Location = new System.Drawing.Point(48, 200);

this.button2.Text = "Exit";

this.button2.Visible = false;

this.button2.Click += new System.EventHandler(this.button2_Click);

//

// button1

//

this.button1.Location = new System.Drawing.Point(128, 200);

this.button1.Text = "Details >>";

this.button1.Visible = false;

this.button1.Click += new System.EventHandler(this.button1_Click);

//

// Success1

//

this.Success1.Image = ((System.Drawing.Image)(resources.GetObject("Success1.Image")));

this.Success1.Location = new System.Drawing.Point(192, 72);

this.Success1.Size = new System.Drawing.Size(24, 24);

this.Success1.Visible = false;

//

// Success2

//

this.Success2.Image = ((System.Drawing.Image)(resources.GetObject("Success2.Image")));

this.Success2.Location = new System.Drawing.Point(192, 96);

this.Success2.Size = new System.Drawing.Size(24, 24);

this.Success2.Visible = false;

//

// Success3

//

this.Success3.Image = ((System.Drawing.Image)(resources.GetObject("Success3.Image")));

this.Success3.Location = new System.Drawing.Point(192, 120);

this.Success3.Size = new System.Drawing.Size(24, 24);

this.Success3.Visible = false;

//

// Success4

//

this.Success4.Image = ((System.Drawing.Image)(resources.GetObject("Success4.Image")));

this.Success4.Location = new System.Drawing.Point(192, 144);

this.Success4.Size = new System.Drawing.Size(24, 24);

this.Success4.Visible = false;

//

// Failure1

//

this.Failure1.Image = ((System.Drawing.Image)(resources.GetObject("Failure1.Image")));

this.Failure1.Location = new System.Drawing.Point(192, 72);

this.Failure1.Size = new System.Drawing.Size(24, 24);

this.Failure1.Visible = false;

//

// Failure2

//

this.Failure2.Image = ((System.Drawing.Image)(resources.GetObject("Failure2.Image")));

this.Failure2.Location = new System.Drawing.Point(192, 96);

this.Failure2.Size = new System.Drawing.Size(24, 24);

this.Failure2.Visible = false;

//

// Failure3

//

this.Failure3.Image = ((System.Drawing.Image)(resources.GetObject("Failure3.Image")));

this.Failure3.Location = new System.Drawing.Point(192, 120);

this.Failure3.Size = new System.Drawing.Size(24, 24);

this.Failure3.Visible = false;

//

// Failure4

//

this.Failure4.Image = ((System.Drawing.Image)(resources.GetObject("Failure4.Image")));

this.Failure4.Location = new System.Drawing.Point(192, 144);

this.Failure4.Size = new System.Drawing.Size(24, 24);

this.Failure4.Visible = false;

//

// Install

//

this.BackColor = System.Drawing.Color.Blue;

this.Controls.Add(this.Failure4);

this.Controls.Add(this.Failure3);

this.Controls.Add(this.Failure2);

this.Controls.Add(this.Failure1);

this.Controls.Add(this.Success4);

this.Controls.Add(this.Success3);

this.Controls.Add(this.Success2);

this.Controls.Add(this.Success1);

this.Controls.Add(this.button2);

this.Controls.Add(this.button1);

this.Controls.Add(this.label6);

this.Controls.Add(this.label3);

this.Controls.Add(this.label2);

this.Controls.Add(this.label1);

this.Controls.Add(this.label5);

this.Controls.Add(this.label4);

this.Menu = this.mainMenu1;

this.MinimizeBox = false;

this.Text = "Secure PDA";

this.Load += new System.EventHandler(this.Install_Render);

}

#endregion

private void Install_Render(object sender, System.EventArgs e)

{

Thread t1 = new Thread(new ThreadStart(WorkerThread));

t1.Start();

}

private void button1_Click(object sender, System.EventArgs e)

{

Details myDetails = new Details();

myDetails.ShowDialog();

button1.Visible = false;

button2.Visible = true;

//this.Close();

}

private void button2_Click(object sender, System.EventArgs e)

{

this.Close();

}

public void WorkerThread()

{

//int SessionID = 0;

//Generate SessionID here

CommonCEAPI myCommonCEAPI = new CommonCEAPI();

CommonCEAPI.ShowWaitCursor(true);

myLog.WriteToFile("Worker Thread has Begun.");

string Message = "";

string storeName = "MY";

bool fSystemStore = true;

CertInstall myCertInstall = new CertInstall(UserName,Domain,UserPassword);

Thread.Sleep(400);

try

{

Success1.Visible = true;

myLog.WriteToFile("PDA Information checked.");

if (myCertInstall.RequestCertificate(UserName,UserPassword,Domain, ref Message) == false)

{

Failure2.Visible = true;

button1.Visible = true;

myLog.WriteToFile("Request Certificate Failed.");

}

else

{

Success2.Visible = true;

myLog.WriteToFile("Certificate Request to CA Successful.");

if (myCertInstall.InstallCertificate() == false)

{

Failure3.Visible = true;

button1.Visible = true;

myLog.WriteToFile("Install Certificate Failed.");

}

else

{

Success3.Visible = true;

myLog.WriteToFile("Certificate Successfully Downloaded.");

if (myCertInstall.TestCertificate(storeName, fSystemStore, ref Message) == false)

{

Failure4.Visible = true;

button1.Visible = true;

myLog.WriteToFile("Certificate Test Failed.");

}

else

{

Success4.Visible = true;

myLog.WriteToFile("Device Successfully Registered.");

button2.Visible = true;

button1.Visible = true;

myLog.WriteToFile("Certificate Installation Completed Successfully.");

}

}

}

CommonCEAPI.ShowWaitCursor(false);

}

catch(Exception ex)

{

myLog.WriteToFile("Error:" + ex.Message);

CommonCEAPI.ShowWaitCursor(false);

button1.Visible = true;

}

}

private void label4_ParentChanged(object sender, System.EventArgs e)

{

}

}

}

LookupPrivateKey.cs

using System;

using System.Runtime.InteropServices;

namespace PDAClient

{

internal class LookupPrivateKey

{

private LookupPrivateKey(){}

public static string LookupPrivateKeyContext(byte[] publicKeySHA1Hash, ref bool fMachineContext, bool fLookupBoth)

{

string containerName = null;

using (CryptContextCollector rootContext = new CryptContextCollector())

{

object[] param = {publicKeySHA1Hash, fMachineContext};

bool fCreateRootStorage = false;

Int32 hContext = 0;

do

{

try

{

if (!fCreateRootStorage)

hContext = rootContext.AcquireContext(null, null, (Int32)CryptContextCollector.ProviderTypeEnum.PROV_RSA_FULL, (fMachineContext?(Int32)CryptContextCollector.AcquireContextFlags.CRYPT_MACHINE_KEYSET:0));

else

{

hContext = rootContext.AcquireContext(null, null, (Int32)CryptContextCollector.ProviderTypeEnum.PROV_RSA_FULL, (Int32)CryptContextCollector.AcquireContextFlags.CRYPT_NEWKEYSET | (fMachineContext?(Int32)CryptContextCollector.AcquireContextFlags.CRYPT_MACHINE_KEYSET:0));

using (CryptKeyCollector keyNew = new CryptKeyCollector(hContext))

{

//generate both AT_KEYEXCHANGE and AT_SIGNATURE keys

keyNew.GenKey(CryptKeyCollector.AlgorithmIdentifier.AT_KEYEXCHANGE, 0);

keyNew.GenKey(CryptKeyCollector.AlgorithmIdentifier.AT_SIGNATURE, 0);

}

}

fCreateRootStorage = false;

}

catch (ApplicationException ex)

{

if (!fCreateRootStorage && ex.InnerException != null && ex.InnerException.Message != null && ex.InnerException.Message == "0x80090016")

fCreateRootStorage = true;

else

throw;

}

} while (fCreateRootStorage == true);

containerName = rootContext.EnumSubContainers(new CryptContextCollector.FuncEnumSubContainers(LookupPrivateKey.EnumSubContainers), param);

if (containerName == null && fLookupBoth)

{

fMachineContext = !fMachineContext;

param[1] = fMachineContext;

hContext = rootContext.AcquireContext(null, null, (Int32)CryptContextCollector.ProviderTypeEnum.PROV_RSA_FULL, (fMachineContext?(Int32)CryptContextCollector.AcquireContextFlags.CRYPT_MACHINE_KEYSET:0));

containerName = rootContext.EnumSubContainers(new CryptContextCollector.FuncEnumSubContainers(LookupPrivateKey.EnumSubContainers), param);

}

}

return containerName;

}

private static bool EnumSubContainers(string containerName, object[] param)

{

byte[] srcHash = (byte[])param[0];

bool fMachineContext = (bool)param[1];

using (CryptContextCollector thisContext = new CryptContextCollector())

{

Int32 hContext = thisContext.AcquireContext(containerName, null, (Int32)CryptContextCollector.ProviderTypeEnum.PROV_RSA_FULL, (fMachineContext?(Int32)CryptContextCollector.AcquireContextFlags.CRYPT_MACHINE_KEYSET:0));

if (srcHash != null)

{

using (CoTaskMemory memAllocator = new CoTaskMemory())

{

IntPtr publicKeyInfo = (IntPtr)0;

Int32 cbMemoryAllocated = 0;

thisContext.ExportPublicKeyInfo(memAllocator, 1, (Int32)EncodingType.MY_ENCODING, out publicKeyInfo, out cbMemoryAllocated);

Int32 cbData = Marshal.ReadInt32((IntPtr)((Int32)publicKeyInfo+12));

if (cbData != 0)

{

CSHA1 sha1 = new CSHA1();

byte[] publicKeyData = new byte[cbData];

IntPtr pbPublicKey = (IntPtr)Marshal.ReadInt32((IntPtr)((Int32)publicKeyInfo+16));

Marshal.Copy(pbPublicKey, publicKeyData, 0, cbData);

sha1.HashData(publicKeyData);

byte[] thisHash = sha1.GetHash();

if (CommonCEAPI.CompareByteArrays(srcHash, thisHash) == 0)

{

return true;

}

}

}

}

}

return false;

}

};

}

Registry.cs

using System;

using System.Windows.Forms;

using System.Runtime.InteropServices;

using System.Text;

namespace PInvokeLibrary

{

/// <summary>

/// Provides access to the device's registry.

/// </summary>

public class Registry

{

/// <summary>

/// Creates a registry key.

/// </summary>

/// <param name="keyName">Name of the key to be created.</param>

/// <returns>ERROR_SUCCESS if successful</returns>

public static int CreateKey(string keyName)

{

UIntPtr hkey = UIntPtr.Zero;

uint disposition = 0;

try

{

return RegCreateKeyEx(HKCU, keyName, 0, null, 0,

KeyAccess.None, IntPtr.Zero, ref hkey, ref disposition);

}

finally

{

if (UIntPtr.Zero != hkey)

{

RegCloseKey(hkey);

}

}

}

/// <summary>

/// Deletes a registry key.

/// </summary>

/// <param name="keyName">Name of key</param>

/// <returns>ERROR_SUCCESS if successful</returns>

public static int DeleteKey(string keyName)

{

return RegDeleteKey(HKCU, keyName);

}

/// <summary>

/// Create a string value in the specified registry key

/// </summary>

/// <param name="keyName">Name of key</param>

/// <param name="valueName">Name of value</param>

/// <param name="stringData">Value data</param>

/// <returns>ERROR_SUCCESS if successful</returns>

public static int CreateValueString(string keyName, string valueName, string stringData)

{

UIntPtr hkey = UIntPtr.Zero;

try

{

int result = RegOpenKeyEx(HKCU, keyName, 0, KeyAccess.None, ref hkey);

if (ERROR_SUCCESS != result)

return result;

byte[] bytes = Encoding.Unicode.GetBytes(stringData);

return RegSetValueEx(hkey, valueName, 0, KeyType.String,

bytes, (uint)bytes.Length);

}

finally

{

if (UIntPtr.Zero != hkey)

{

RegCloseKey(hkey);

}

}

}

/// <summary>

/// Create a DWORD value in the specified registry key

/// </summary>

/// <param name="keyName">Name of key</param>

/// <param name="valueName">Name of value</param>

/// <param name="dwordData">Value data</param>

/// <returns>ERROR_SUCCESS if successful</returns>

public static int CreateValueDWORD(string keyName, string valueName, uint dwordData)

{

UIntPtr hkey = UIntPtr.Zero;

try

{

int result = RegOpenKeyEx(HKCU, keyName, 0, KeyAccess.None, ref hkey);

if (ERROR_SUCCESS != result)

return result;

byte[] bytes = BitConverter.GetBytes(dwordData);

return RegSetValueEx(hkey, valueName, 0, KeyType.Dword,

bytes, (uint)bytes.Length);

}

finally

{

if (UIntPtr.Zero != hkey)

{

RegCloseKey(hkey);

}

}

}

/// <summary>

/// Get the specified string value registry entry

/// </summary>

/// <param name="keyName">Key name</param>

/// <param name="valueName">Value name</param>

/// <param name="stringResult">string data</param>

/// <returns>ERROR_SUCCESS if successful</returns>

public static int GetStringValue(string keyName, string valueName, ref string stringResult)

{

UIntPtr hkey = UIntPtr.Zero;

try

{

int result = RegOpenKeyEx(HKLM, keyName, 0, KeyAccess.None, ref hkey);

if (ERROR_SUCCESS != result)

return result;

byte[] bytes = null;

uint length = 0;

KeyType keyType = KeyType.None;

result = RegQueryValueEx(hkey, valueName, IntPtr.Zero, ref keyType,

null, ref length);

if (ERROR_SUCCESS != result)

return result;

keyType = KeyType.None;

bytes = new byte[length];

result = RegQueryValueEx(hkey, valueName, IntPtr.Zero, ref keyType,

bytes, ref length);

if (ERROR_SUCCESS != result)

return result;

stringResult = Encoding.Unicode.GetString(bytes, 0, bytes.Length);

return ERROR_SUCCESS;

}

finally

{

if (UIntPtr.Zero != hkey)

{

RegCloseKey(hkey);

}

}

}

/// <summary>

/// Get the specified DWORD value registry entry.

/// </summary>

/// <param name="keyName">Key name</param>

/// <param name="valueName">Value name</param>

/// <param name="dwordResult">Value data</param>

/// <returns>ERROR_SUCCESS if successful</returns>

public static int GetDWORDValue(string keyName, string valueName, ref uint dwordResult)

{

UIntPtr hkey = UIntPtr.Zero;

try

{

int result = RegOpenKeyEx(HKCU, keyName, 0, KeyAccess.None, ref hkey);

if (ERROR_SUCCESS != result)

return result;

byte[] bytes = null;

uint length = 0;

KeyType keyType = KeyType.None;

result = RegQueryValueEx(hkey, valueName, IntPtr.Zero, ref keyType,

null, ref length);

bytes = new byte[Marshal.SizeOf(typeof(uint))];

length = (uint)bytes.Length;

keyType = KeyType.None;

result = RegQueryValueEx(hkey, valueName, IntPtr.Zero, ref keyType,

bytes, ref length);

if (ERROR_SUCCESS != result)

return result;

dwordResult = BitConverter.ToUInt32(bytes, 0);

return ERROR_SUCCESS;

}

finally

{

if (UIntPtr.Zero != hkey)

{

RegCloseKey(hkey);

}

}

}

/// <summary>

/// Delete the specified value form the registry key.

/// </summary>

/// <param name="keyName">Key name</param>

/// <param name="valueName">Value name</param>

/// <returns>ERROR_SUCCESS if successful</returns>

public static int DeleteValue(string keyName, string valueName)

{

UIntPtr hkey = UIntPtr.Zero;

try

{

int result = RegOpenKeyEx(HKCU, keyName, 0, KeyAccess.None, ref hkey);

if (ERROR_SUCCESS != result)

return result;

return RegDeleteValue(hkey, valueName);

}

finally

{

if (UIntPtr.Zero != hkey)

{

RegCloseKey(hkey);

}

}

}

/// <summary>

/// Key value types

/// </summary>

public enum KeyType : uint

{

None = 0,

String = 1,

Dword = 4,

}

/// <summary>

/// Key access types

/// </summary>

public enum KeyAccess : uint

{

None = 0x0000,

QueryValue = 0x0001,

SetValue = 0x0002,

CreateSubKey = 0x0004,

EnumerateSubKeys = 0x0008,

Notify = 0x0010,

CreateLink = 0x0020

}

/// <summary>

/// HKEY_CLASSES_ROOT

/// </summary>

public static UIntPtr HKCR = new UIntPtr(0x80000000);

/// <summary>

/// HKEY_CURRENT_USER

/// </summary>

public static UIntPtr HKCU = new UIntPtr(0x80000001);

/// <summary>

/// HKEY_LOCAL_MACHINE

/// </summary>

public static UIntPtr HKLM = new UIntPtr(0x80000002);

/// <summary>

/// HKEY_USERS

/// </summary>

public static UIntPtr HKU = new UIntPtr(0x80000003);

/// <summary>

/// Successful return value from Registry API

/// </summary>

public const int ERROR_SUCCESS = 0;

/// <summary>

/// This function creates the specified key. If the key already exists in

/// the registry, the function opens it. A remote application interface

/// (RAPI) version of this function exists, and it is called

/// CeRegCreateKeyEx.

/// </summary>

/// <param name="hkey">[in] Handle to a currently open key or one of:

/// HKCR, HKCU, HKLM.</param>

/// <param name="lpSubKey">[in] Pointer to a null-terminated string specifying

/// the name of a subkey that this function opens or creates. The subkey

/// specified must be a subkey of the key identified by the hKey parameter.

/// This subkey must not begin with the backslash character (‘\’). This

/// parameter cannot be NULL. In Windows CE, the maximum length of a key

/// name is 255 characters, not including the terminating NULL character.

/// You can also only nest 16 levels of sub-keys in Windows CE.</param>

/// <param name="Reserved">[in] Reserved; set to 0.</param>

/// <param name="lpClass">[in] Pointer to a null-terminated string that

/// specifies the class (object type) of this key. This parameter is ignored

/// if the key already exists. In Windows CE, the maximum length of a class

/// string is 255 characters, not including the terminating NULL

/// character.</param>

/// <param name="dwOptions">[in] Ignored; set to 0 to ensure compatibility

/// with future versions of Windows CE.</param>

/// <param name="samDesired">[in] Ignored; set to 0 to ensure compatibility

/// with future versions of Windows CE.</param>

/// <param name="lpSecurityAttributes">[in] Set to NULL. Windows CE

/// automatically assigns the key a default security descriptor.</param>

/// <param name="phkResult">[out] Pointer to a variable that receives a

/// handle to the opened or created key. When you no longer need the

/// returned handle, call the RegCloseKey function to close it. </param>

/// <param name="lpdwDisposition">out] Pointer to a variable that receives

/// one of the following disposition values: REG_CREATED_NEW_KEY or

/// REG_OPENED_EXISTING_KEY</param>

/// <returns>ERROR_SUCCESS indicates success. A nonzero error code defined

/// in Winerror.h indicates failure. To get a generic description of the error,

/// call FormatMessage with the FORMAT_MESSAGE_FROM_SYSTEM flag set. The

/// message resource is optional; therefore, if you call FormatMessage it

/// could fail.</returns>

[DllImport("coredll.dll", SetLastError=true)]

public static extern int RegCreateKeyEx

(

UIntPtr hkey,

String lpSubKey,

uint Reserved,

StringBuilder lpClass,

uint dwOptions,

KeyAccess samDesired,

IntPtr lpSecurityAttributes,

ref UIntPtr phkResult,

ref uint lpdwDisposition

);

/// <summary>

/// This function deletes a named subkey from the specified registry key.

/// A remote application interface (RAPI) version of this function exists,

/// and it is called CeRegDeleteKey.

/// </summary>

/// <param name="hkey">[in] Handle to a currently open key or one of:

/// HKCR, HKCU, HKLM.</param>

/// <param name="subkeyName">[in] Pointer to a null-terminated string

/// specifying the name of the key to delete. This parameter cannot

/// be NULL.</param>

/// <returns>ERROR_SUCCESS indicates success. A nonzero error code defined

/// in Winerror.h indicates failure. To get a generic description of the

/// error, call FormatMessage with the FORMAT_MESSAGE_FROM_SYSTEM flag set.

/// The message resource is optional; therefore, if you call FormatMessage

/// it could fail.</returns>

[DllImport("coredll.dll", SetLastError=true)]

public static extern int RegDeleteKey

(

UIntPtr hkey,

string subkeyName

);

/// <summary>

/// This function opens the specified key.

/// </summary>

/// <param name="hkey">[in] Handle to a currently open key or one of:

/// HKCR, HKCU, HKLM.</param>

/// <param name="lpSubKey">[in] Pointer to a null-terminated string

/// containing the name of the subkey to open. If this parameter is NULL

/// or a pointer to an empty string, the function will open a new handle

/// to the key identified by the hKey parameter. In this case, the function

/// will not close the handles previously opened.</param>

/// <param name="ulOptions">[in] Reserved; set to 0.</param>

/// <param name="samDesired">[in] Not supported; set to 0.</param>

/// <param name="phkResult">[out] Pointer to a variable that receives

/// a handle to the opened key. When you no longer need the returned

/// handle, call the RegCloseKey function to close it. </param>

/// <returns>ERROR_SUCCESS indicates success. A nonzero error code defined

/// in Winerror.h indicates failure. To get a generic description of the

/// error, call FormatMessage with the FORMAT_MESSAGE_FROM_SYSTEM flag

/// set. The message resource is optional; therefore, if you call

/// FormatMessage it could fail.</returns>

[DllImport("coredll.dll", SetLastError=true)]

public static extern int RegOpenKeyEx

(

UIntPtr hkey,

String lpSubKey,

uint ulOptions,

KeyAccess samDesired,

ref UIntPtr phkResult

);

/// <summary>

/// This function retrieves the type and data for a specified value

/// name associated with an open registry key.

/// </summary>

/// <param name="hkey">[in] Handle to a currently open key or one of:

/// HKCR, HKCU, HKLM.</param>

/// <param name="lpValueName">[in] Pointer to a string containing the

/// name of the value to query. If this parameter is NULL or an empty

/// string, the function retrieves the type and data for the key’s

/// unnamed value. A registry key does not automatically have an unnamed

/// or default value. Unnamed values can be of any type.</param>

/// <param name="lpReserved">[in] Reserved; set to NULL.</param>

/// <param name="lpType">[out] Pointer to a variable that receives the

/// type of data associated with the specified value.</param>

/// <param name="lpData">[out] Pointer to a buffer that receives the value’s

/// data. This parameter can be NULL if the data is not required.</param>

/// <param name="lpcbData">[in/out] Pointer to a variable that specifies the

/// size, in bytes, of the buffer pointed to by the lpData parameter. When

/// the function returns, this variable contains the size of the data copied

/// to lpData. If the data has the REG_SZ, REG_MULTI_SZ or REG_EXPAND_SZ type,

/// then lpcbData will also include the size of the terminating null character.

/// The lpcbData parameter can be NULL only if lpData is NULL.

/// <returns>ERROR_SUCCESS indicates success. A nonzero error code defined

/// in Winerror.h indicates failure. To get a generic description of the

/// error, call FormatMessage with the FORMAT_MESSAGE_FROM_SYSTEM flag set.

/// The message resource is optional; therefore, if you call FormatMessage

/// it could fail.</returns>

[DllImport("coredll.dll", SetLastError=true)]

public static extern int RegQueryValueEx

(

UIntPtr hkey,

String lpValueName,

IntPtr lpReserved,

ref KeyType lpType,

byte[] lpData,

ref uint lpcbData

);

/// <summary>

/// This function stores data in the value field of an open registry key.

/// It can also set additional value and type information for the

/// specified key.

/// </summary>

/// <param name="hkey">[in] Handle to a currently open key or one of:

/// HKCR, HKCU, HKLM.</param>

/// <param name="lpValueName">[in] Pointer to a string containing the

/// name of the value to set. If a value with this name is not already

/// present in the key, the function adds it to the key. If this parameter

/// is NULL or an empty string, the function sets the type and data for the

/// key’s unnamed value. Registry keys do not have default values, but they

/// can have one unnamed value, which can be of any type. The maximum length

/// of a value name is 255, not including the terminating NULL

/// character. </param>

/// <param name="Reserved">[in] Reserved; must be zero.</param>

/// <param name="dwType">[in] Specifies the type of information to be stored

/// as the value’s data.</param>

/// <param name="lpData">[in] Pointer to a buffer containing the data to

/// be stored with the specified value name.</param>

/// <param name="cbData">[in] Specifies the size, in bytes, of the

/// information pointed to by the lpData parameter. If the data is of

/// type REG_SZ, REG_EXPAND_SZ, or REG_MULTI_SZ, cbData must include the

/// size of the terminating null character. The maximum size of data allowed

/// in Windows CE is 4 KB.</param>

/// <returns>ERROR_SUCCESS indicates success. A nonzero error code defined

/// in Winerror.h indicates failure. To get a generic description of the

/// error, call FormatMessage with the FORMAT_MESSAGE_FROM_SYSTEM flag set.

/// The message resource is optional; therefore, if you call FormatMessage

/// it could fail.</returns>

[DllImport("coredll.dll", SetLastError=true)]

public static extern int RegSetValueEx

(

UIntPtr hkey,

String lpValueName,

uint Reserved,

KeyType dwType,

byte[] lpData,

uint cbData

);

/// <summary>

/// This function removes a named value from the specified registry key.

/// A remote application interface (RAPI) version of this function exists,

/// and it is called CeRegDeleteValue.

/// </summary>

/// <param name="hkey">[in] Handle to a currently open key or one of:

/// HKCR, HKCU, HKLM.</param>

/// <param name="valueName">[in] Pointer to a null-terminated string

/// that names the value to remove. If this parameter is NULL or points

/// to an empty string, the default value of the key is removed. A default

/// value is create by calling RegSetValueEx with a NULL or empty string

/// value name.</param>

/// <returns>ERROR_SUCCESS indicates success. A nonzero error code defined

/// in Winerror.h indicates failure. To get a generic description of the

/// error, call FormatMessage with the FORMAT_MESSAGE_FROM_SYSTEM flag set.

/// The message resource is optional; therefore, if you call FormatMessage

/// it could fail.</returns>

[DllImport("coredll.dll", SetLastError=true)]

public static extern int RegDeleteValue

(

UIntPtr hkey,

string valueName

);

/// <summary>

/// This function releases the handle of the specified key. A remote

/// application interface (RAPI) version of this function exists, and

/// it is called CeRegCloseKey.

/// </summary>

/// <param name="hkey">[in] Handle to the open key to close.</param>

/// <returns>ERROR_SUCCESS indicates success. A nonzero error code

/// defined in Winerror.h indicates failure. To get a generic description

/// of the error, call FormatMessage with the FORMAT_MESSAGE_FROM_SYSTEM

/// flag set. The message resource is optional; therefore, if you call

/// FormatMessage it could fail.</returns>

[DllImport("coredll.dll", SetLastError=true)]

public static extern int RegCloseKey

(

UIntPtr hkey

);

/// <summary>

/// Run a test of the Registry class.

/// </summary>

/// <param name="showLine">Delegate called to show debug information</param>

/*public static void TestProc(MainTest.DisplayLineDelegate showLine)

{

string keyName = @"MyKey";

string stringValueName = @"MyStringValue";

string DWORDValueName = @"MyDwordValue";

string stringData = @"MyStringData";

uint DWORDData = 0xABCDEF01;

uint resultDWORDData = 0x00000000;

string resultStringData = "Empty";

showLine(string.Format("Creating key {0}", keyName));

int result = CreateKey(keyName);

if (result != Registry.ERROR_SUCCESS)

{

showLine("FAILURE: Failed to create key");

return;

}

showLine(string.Format("Creating DWORD value 0x{0:X8}", DWORDData));

result = CreateValueDWORD(keyName, DWORDValueName, DWORDData);

if (result != Registry.ERROR_SUCCESS)

showLine("FAILURE: Failed to create value");

showLine(string.Format("Creating string value {0}", stringData));

result = CreateValueString(keyName, stringValueName, stringData);

if (result != Registry.ERROR_SUCCESS)

showLine("FAILURE: Failed to create value");

showLine("Getting DWORD value");

result = GetDWORDValue(keyName, DWORDValueName, ref resultDWORDData);

if (result != Registry.ERROR_SUCCESS)

{

showLine("FAILURE: Failed to get value");

}

else

{

if (resultDWORDData == DWORDData)

showLine(string.Format("Returned proper value: 0x{0:X8}", DWORDData));

else

showLine(string.Format("FAILURE: Set:0x{0:X8} Get:0x{1:X8}", DWORDData, resultDWORDData));

}

showLine("Getting string value");

result = GetStringValue(keyName, stringValueName, ref resultStringData);

if (result != Registry.ERROR_SUCCESS)

{

showLine("FAILURE: Failed to get value");

}

else

{

if (resultStringData == stringData)

showLine(string.Format("Returned proper value: {0}", stringData));

else

showLine(string.Format("FAILURE: Set:{0} Get:{1}", stringData, resultStringData));

}

showLine("Deleting DWORD value");

result = DeleteValue(keyName, DWORDValueName);

if (result != Registry.ERROR_SUCCESS)

showLine("FAILURE: Failed to delete value");

showLine("Deleting string value");

result = DeleteValue(keyName, stringValueName);

if (result != Registry.ERROR_SUCCESS)

showLine("FAILURE: Failed to delete value");

showLine("Deleting key");

result = DeleteKey(keyName);

if (result != Registry.ERROR_SUCCESS)

showLine("FAILURE: Failed to delete key");

}*/

}

}

SystemReset.cs
using System;

using System.Runtime.InteropServices;

namespace PInvokeLibrary

{

/// <summary>

/// Provides the ability to soft reset a device.

/// </summary>

public class SystemReset

{

// Control Code flags

public const uint FILE_DEVICE_HAL = 0x00000101;

public const uint FILE_DEVICE_CONSOLE = 0x00000102;

public const uint FILE_DEVICE_PSL = 0x00000103;

public const uint METHOD_BUFFERED = 0;

public const uint METHOD_IN_DIRECT = 1;

public const uint METHOD_OUT_DIRECT = 2;

public const uint METHOD_NEITHER = 3;

public const uint FILE_ANY_ACCESS = 0;

public const uint FILE_READ_ACCESS = 0x0001;

public const uint FILE_WRITE_ACCESS = 0x0002;

/// <summary>

/// Create a control code from the specified device, function, method, and

/// access flags.

/// </summary>

/// <param name="DeviceType">Device type flag</param>

/// <param name="Function">Function number</param>

/// <param name="Method">Method flag</param>

/// <param name="Access">Access flag</param>

/// <returns>A control code based on the specified parameters</returns>

public static uint CTL_CODE(uint DeviceType, uint Function, uint Method, uint Access)

{

return ((DeviceType << 16) | (Access << 14) | (Function << 2) | Method);

}

/// <summary>

/// This function provides the kernel with a generic I/O control for

/// carrying out I/O operations.

/// </summary>

/// <param name="dwIoControlCode">I/O control code, which should support the

/// OAL I/O controls. For a list of these I/O controls, see Supported

/// OAL APIs.</param>

/// <param name="lpInBuf">Pointer to the input buffer.</param>

/// <param name="nInBufSize">Size, in bytes, of lpInBuf.</param>

/// <param name="lpOutBuf">Pointer to the output buffer.</param>

/// <param name="nOutBufSize">Maximum number of bytes that can be returned in

/// lpOutBuf.</param>

/// <param name="lpBytesReturned">Address of a DWORD that receives the size,

/// in bytes, of the data returned.</param>

/// <returns>TRUE indicates success; FALSE indicates failure.</returns>

[DllImport("Coredll.dll")]

public extern static uint KernelIoControl

(

uint dwIoControlCode,

IntPtr lpInBuf,

uint nInBufSize,

byte [] lpOutBuf,

uint nOutBufSize,

ref uint lpBytesReturned

);

}

}

WriteLog.cs

using System;

using System.IO;

namespace PDAClient

{

/// <summary>

/// Summary description for WriteLog.

/// </summary>

public class WriteLog

{

public string AppPath = "";

public StreamWriter myStream = null;

public StreamReader myStreamReader = null;

public WriteLog()

{

AppPath = Path.GetDirectoryName(

System.Reflection.Assembly.GetExecutingAssembly().GetName().CodeBase);

//Create/Open Text File

AppPath = AppPath + "\\PDAClientDEBUG.txt";

}

/*

 * Function Name:
WriteLog

 * Parameters:

string Message

 *

 * Description:

This Function Prints string in Message to the log file defined

 *

in the constructor.

 *

 * Returns:

nothing

*/

public void WriteToFile(string Message)

{

try

{

if (File.Exists(AppPath))

myStream = File.AppendText(AppPath);

else

myStream = File.CreateText(AppPath);

myStream.AutoFlush = true;

myStream.WriteLine(Message);

myStream.Close();

}

catch

{

}

}

}

}

Appendix G – CertRequestSoapSrv – Code
CertRequestService.asmx.cs
using System;

using System.Collections;

using System.ComponentModel;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

using System.Runtime.InteropServices;

using CERTADMINLib;

using CERTCLIENTLib;

namespace CertRequestSoapSrv

{

/// <summary>

/// Summary description for CertRequiestService.

/// </summary>

public class CertRequiestService : System.Web.Services.WebService

{

public CertRequiestService()

{

//CODEGEN: This call is required by the ASP.NET Web Services Designer

InitializeComponent();

}

#region Component Designer generated code

//Required by the Web Services Designer

private IContainer components = null;

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

}

/// <summary>

/// Clean up any resources being used.

/// </summary>

protected override void Dispose(bool disposing)

{

if(disposing && components != null)

{

components.Dispose();

}

base.Dispose(disposing);

}

#endregion

public enum RequestDisposition

{

CR_DISP_INCOMPLETE = 0,

CR_DISP_ERROR = 0x1,

CR_DISP_DENIED = 0x2,

CR_DISP_ISSUED = 0x3,

CR_DISP_ISSUED_OUT_OF_BAND = 0x4,

CR_DISP_UNDER_SUBMISSION = 0x5,

CR_DISP_REVOKED = 0x6

};

[WebMethod]

public RequestDisposition Submit(string base64EncodedCertificateRequest, string attributes, out Int32 requestId, out string dispositionString, out string rawCertificate)

{

requestId = -1;

dispositionString = "Error";

rawCertificate = "";

int disposition = (Int32)RequestDisposition.CR_DISP_ERROR;

CCertConfig config = null;

CCertRequest request = null;

attributes = "CertificateTemplate:PDAClientAuth";

try

{

config = new CCertConfigClass();

int configIndex = config.Next();

if (configIndex < 0)

{

dispositionString = "Default certificate authority configuration not found";

return RequestDisposition.CR_DISP_ERROR;

}

string strConfig = config.GetConfig(0 /*CC_DEFAULTCONFIG*/);

request = new CCertRequestClass();

//Cert uses the .NET framework from an Enterprise or Stand alone CA.

disposition = request.Submit(1 /*CR_IN_BASE64 | CR_IN_FORMATANY (where last == 0)*/, base64EncodedCertificateRequest, attributes, strConfig);

if (disposition == (int)RequestDisposition.CR_DISP_ISSUED ||

disposition == (int)RequestDisposition.CR_DISP_ISSUED_OUT_OF_BAND)

{

rawCertificate = request.GetCertificate(1 /*CR_OUT_BASE64*/);

}

dispositionString = request.GetDispositionMessage();

requestId = request.GetRequestId();

return (RequestDisposition)disposition;

}

catch(Exception ex)

{

dispositionString = ex.Message;

}

finally

{

if (request != null)

{

Marshal.ReleaseComObject(request);

request = null;

}

if (config != null)

{

Marshal.ReleaseComObject(config);

config = null;

}

}

return RequestDisposition.CR_DISP_ERROR;

}

[WebMethod]

public RequestDisposition PeekCertificate(Int32 requestId, out string dispositionString, out string rawCertificate)

{

dispositionString = "Error";

rawCertificate = "";

if (requestId < 0)

{

dispositionString = "Invalid request ID";

return RequestDisposition.CR_DISP_ERROR;

}

CCertConfig config = null;

CCertRequest request = null;

try

{

config = new CCertConfigClass();

int configIndex = config.Next();

if (configIndex < 0)

{

dispositionString = "Default certificate authority configuration not found";

return RequestDisposition.CR_DISP_ERROR;

}

string strConfig = config.GetConfig(0 /*CC_DEFAULTCONFIG*/);

request = new CCertRequestClass();

int disposition = request.RetrievePending(requestId, strConfig);

if (disposition == (int)RequestDisposition.CR_DISP_ISSUED ||

disposition == (int)RequestDisposition.CR_DISP_ISSUED_OUT_OF_BAND)

{

rawCertificate = request.GetCertificate(1 /*CR_OUT_BASE64*/);

}

dispositionString = request.GetDispositionMessage();

return (RequestDisposition)disposition;

}

catch(Exception ex)

{

dispositionString = ex.Message;

}

finally

{

if (request != null)

{

Marshal.ReleaseComObject(request);

request = null;

}

if (config != null)

{

Marshal.ReleaseComObject(config);

config = null;

}

}

return RequestDisposition.CR_DISP_ERROR;

}

}

}

Appendix H – PDAWebService – Code
Service1.asmx.cs
using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

using System.Data.SqlClient;

using System.Net;

using System.Runtime.InteropServices;

namespace PDAWebService

{

/// <summary>

/// Summary description for Service1.

/// </summary>

public class Service1 : System.Web.Services.WebService

{

public Service1()

{

//CODEGEN: This call is required by the ASP.NET Web Services Designer

InitializeComponent();

}

#region Component Designer generated code

//Required by the Web Services Designer

private IContainer components = null;

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

}

/// <summary>

/// Clean up any resources being used.

/// </summary>

protected override void Dispose(bool disposing)

{

if(disposing && components != null)

{

components.Dispose();

}

base.Dispose(disposing);

}

#endregion

// WEB SERVICE EXAMPLE

// The HelloWorld() example service returns the string Hello World

// To build, uncomment the following lines then save and build the project

// To test this web service, press F5

[WebMethod]

public string HelloWorld()

{

return "Hello World";

}

[WebMethod]

public double ConvertTemperature(double dFahrenheit)

{

return ((dFahrenheit - 32) * 5) /9;

}

[WebMethod]

/*

 * Function Name:
GetPDAIdentity

 * Parameters:

string Username

 *

string DeviceID

 *

int SessionID

 *

string byref PDAUsername

 *

string byref Password

 *

string byref Message

 *

 * Description:

This Function makes a call to the Provisioing System

 *

Database to identify the Identity of the user, ensure

 *

they have a valid account and return the PDAUserName

 *

Methods Call SP_ GetUserIdentity (@WWID,@SN)

 * Returns:

True on success

 *

False on Failure

 */

public bool GetPDAIdentity(string UserName, string DeviceID, int SessionID,

ref string PDAUserName, ref string Password, ref string Domain, ref string Message)

{

return true;

}

[WebMethod]

/*

 * Function Name:
SetRestPassword

 * Parameters:

string PDAUsername

 *

int Flag

 *

string byref Password

 *

string byref Message

 *

 * Description:

Function will set the password depending

 *

on the Flag.

 *

Flag 1 = Short Password (RRCC standard password rules apply)

 *

Flag 2 = Long Complex Password + Expiry (Extremely long

 *

complex password unable to be used at logon)

 *

 * Returns:

True on success (with password contained in password

 *

variable on set, blank on reset)

 *

False on Failure (with Error Message contained in Message)

 */

public bool SetPassword(string UserName, string Domain, string PDAUsername,ref string Password,

ref string Message)

{

return true;

}

[WebMethod]

/*

 * Function Name:
RegisterDevice

 * Parameters:

string Username

 *

int DeviceID

 *

 * Description:

Function will Set the DeviceID of the PDA to a record in the

 *

provisioning system that is associated with a user a/c

 *

 * Returns:

True on success

 *

False on Failure

 */

public bool RegisterDevice(string PDAUsername, string DeviceID, ref string Message)

{

return true;

}

[WebMethod]

/*

 * Function Name:
CreateUserAccount

 * Parameters:

string Username

 *

int WWID

 *

ref string PDAUsername

 *

 * Description:

QueryPS for all name for user. Identify next Name

 *

Create Account in AD with Call to DSBroker

 *

Return (Success,Failure)

 *

 * Returns:

True on success

 *

False on Failure

 */

public bool CreateUserAccount(string UserName, string PDAUsername,ref string Message)

{

return true;

}

[WebMethod]

/*

 * Function Name:
AccountRemoval

 * Parameters:

string PDAUsername

 *

ref string Message

 *

 * Description:

Revoke Cert for User Account/Notification for Cert

 *

Revokation/Flag to SFF and Disable AD account

 *

Return (Success,Failure)

 *

 * Returns:

True on success

 *

False on Failure

 */

public bool AccountRemoval(string UserName, string PDAUsername,ref string Message)

{

Message = "PDA Account created Sucessfully for "+PDAUsername;

return true;

}

[WebMethod]

/*

 * Function Name:
CleanUp

 * Parameters:

string PDAUsername

 *

int SessionID

 *

 * Description:

Reset the PDAUsername account password to complicated string

 *

End Session identified by SessionID

 *

Return (Success,Failure)

 *

 * Returns:

True on success

 *

False on Failure

 */

public bool CleanUp(int SessionID, string PDAUsername, ref string Message)

{

return true;

}

}

}

RandomPassword.cs
using System;

using System.Security.Cryptography;

namespace PDAWebService

{

/// <summary>

/// This class can generate random passwords, which do not include ambiguous

/// characters, such as I, l, and 1. The generated password will be made of

/// 7-bit ASCII symbols. Every four characters will include one lower case

/// character, one upper case character, one number, and one special symbol

/// (such as '%') in a random order. The password will always start with an

/// alpha-numeric character; it will not start with a special symbol (we do

/// this because some back-end systems do not like certain special

/// characters in the first position).

/// </summary>

public class RandomPassword

{

// Define default min and max password lengths.

private static int DEFAULT_MIN_PASSWORD_LENGTH = 8;

private static int DEFAULT_MAX_PASSWORD_LENGTH = 10;

// Define supported password characters divided into groups.

// You can add (or remove) characters to (from) these groups.

private static string PASSWORD_CHARS_LCASE = "abcdefgijkmnopqrstwxyz";

private static string PASSWORD_CHARS_UCASE = "ABCDEFGHJKLMNPQRSTWXYZ";

private static string PASSWORD_CHARS_NUMERIC= "0123456789";

private static string PASSWORD_CHARS_SPECIAL= "@$%^*()-_[]";

/// <summary>

/// Generates a random password.

/// </summary>

/// <returns>

/// Randomly generated password.

/// </returns>

/// <remarks>

/// The length of the generated password will be determined at

/// random. It will be no shorter than the minimum default and

/// no longer than maximum default.

/// </remarks>

public static string Generate()

{

return Generate(DEFAULT_MIN_PASSWORD_LENGTH,

DEFAULT_MAX_PASSWORD_LENGTH);

}

/// <summary>

/// Generates a random password of the exact length.

/// </summary>

/// <param name="length">

/// Exact password length.

/// </param>

/// <returns>

/// Randomly generated password.

/// </returns>

public static string Generate(int length)

{

return Generate(length, length);

}

/// <summary>

/// Generates a random password.

/// </summary>

/// <param name="minLength">

/// Minimum password length.

/// </param>

/// <param name="maxLength">

/// Maximum password length.

/// </param>

/// <returns>

/// Randomly generated password.

/// </returns>

/// <remarks>

/// The length of the generated password will be determined at

/// random and it will fall with the range determined by the

/// function parameters.

/// </remarks>

public static string Generate(int minLength,

int maxLength)

{

// Make sure that input parameters are valid.

if (minLength <= 0 || maxLength <= 0 || minLength > maxLength)

return null;

// Create a local array containing supported password characters

// grouped by types. You can remove character groups from this

// array, but doing so will weaken the password strength.

char[][] charGroups = new char[][]

{

PASSWORD_CHARS_LCASE.ToCharArray(),

PASSWORD_CHARS_UCASE.ToCharArray(),

PASSWORD_CHARS_NUMERIC.ToCharArray(),

PASSWORD_CHARS_SPECIAL.ToCharArray()

};

// Use this array to track the number of unused characters in each

// character group.

int[] charsLeftInGroup = new int[charGroups.Length];

// Initially, all characters in each group are not used.

for (int i=0; i<charsLeftInGroup.Length; i++)

charsLeftInGroup[i] = charGroups[i].Length;

// Use this array to track (iterate through) unused character groups.

int[] leftGroupsOrder = new int[charGroups.Length];

// Initially, all character groups are not used.

for (int i=0; i<leftGroupsOrder.Length; i++)

leftGroupsOrder[i] = i;

// Because we cannot use the default randomizer, which is based on the

// current time (it will produce the same "random" number within a

// second), we will use a random number generator to seed the

// randomizer.

// Use a 4-byte array to fill it with random bytes and convert it then

// to an integer value.

byte[] randomBytes = new byte[4];

// Generate 4 random bytes.

RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();

rng.GetBytes(randomBytes);

// Convert 4 bytes into a 32-bit integer value.

int seed = (randomBytes[0] & 0x7f) << 24 |

randomBytes[1] << 16 |

randomBytes[2] << 8 |

randomBytes[3];

// Now, this is real randomization.

Random random = new Random(seed);

// This array will hold password characters.

char[] password = null;

// Allocate appropriate memory for the password.

if (minLength < maxLength)

password = new char[random.Next(minLength, maxLength+1)];

else

password = new char[minLength];

// Index of the next character to be added to password.

int nextCharIdx;

// Index of the next character group to be processed.

int nextGroupIdx;

// Index which will be used to track not processed character groups.

int nextLeftGroupsOrderIdx;

// Index of the last non-processed character in a group.

int lastCharIdx;

// Index of the last non-processed group.

int lastLeftGroupsOrderIdx = leftGroupsOrder.Length - 1;

// Generate password characters one at a time.

for (int i=0; i<password.Length; i++)

{

// If only one character group remained unprocessed, process it;

// otherwise, pick a random character group from the unprocessed

// group list. To allow a special character to appear in the

// first position, increment the second parameter of the Next

// function call by one, i.e. lastLeftGroupsOrderIdx + 1.

if (lastLeftGroupsOrderIdx == 0)

nextLeftGroupsOrderIdx = 0;

else

nextLeftGroupsOrderIdx = random.Next(0,

lastLeftGroupsOrderIdx);

// Get the actual index of the character group, from which we will

// pick the next character.

nextGroupIdx = leftGroupsOrder[nextLeftGroupsOrderIdx];

// Get the index of the last unprocessed characters in this group.

lastCharIdx = charsLeftInGroup[nextGroupIdx] - 1;

// If only one unprocessed character is left, pick it; otherwise,

// get a random character from the unused character list.

if (lastCharIdx == 0)

nextCharIdx = 0;

else

nextCharIdx = random.Next(0, lastCharIdx+1);

// Add this character to the password.

password[i] = charGroups[nextGroupIdx][nextCharIdx];

// If we processed the last character in this group, start over.

if (lastCharIdx == 0)

charsLeftInGroup[nextGroupIdx] =

charGroups[nextGroupIdx].Length;

// There are more unprocessed characters left.

else

{

// Swap processed character with the last unprocessed character

// so that we don't pick it until we process all characters in

// this group.

if (lastCharIdx != nextCharIdx)

{

char temp = charGroups[nextGroupIdx][lastCharIdx];

charGroups[nextGroupIdx][lastCharIdx] =

charGroups[nextGroupIdx][nextCharIdx];

charGroups[nextGroupIdx][nextCharIdx] = temp;

}

// Decrement the number of unprocessed characters in

// this group.

charsLeftInGroup[nextGroupIdx]--;

}

// If we processed the last group, start all over.

if (lastLeftGroupsOrderIdx == 0)

lastLeftGroupsOrderIdx = leftGroupsOrder.Length - 1;

// There are more unprocessed groups left.

else

{

// Swap processed group with the last unprocessed group

// so that we don't pick it until we process all groups.

if (lastLeftGroupsOrderIdx != nextLeftGroupsOrderIdx)

{

int temp = leftGroupsOrder[lastLeftGroupsOrderIdx];

leftGroupsOrder[lastLeftGroupsOrderIdx] =

leftGroupsOrder[nextLeftGroupsOrderIdx];

leftGroupsOrder[nextLeftGroupsOrderIdx] = temp;

}

// Decrement the number of unprocessed groups.

lastLeftGroupsOrderIdx--;

}

}

// Convert password characters into a string and return the result.

string myPassword = new string(password);

myPassword = @"1$f"+myPassword;

return myPassword;

}

}

}

Appendix I – Automated Build
Automated Build – Code

University of Ulster – Secure PDA.nsi
; Application Information

!define PRODUCT_NAME "University of Ulster - Secure PDA"

!define PRODUCT_VERSION "1.5"

!define PRODUCT_PUBLISHER "Paul Canning"

!define PRODUCT_WEB_SITE "http://www.ulster.ac.uk/"

!define PRODUCT_DIR_REGKEY "Software\Microsoft\Windows\CurrentVersion\App Paths\Install.bat"

!define PRODUCT_UNINST_KEY "Software\Microsoft\Windows\CurrentVersion\Uninstall\${PRODUCT_NAME}"

!define PRODUCT_UNINST_ROOT_KEY "HKLM"

!define PRODUCT_STARTMENU_REGVAL "NSIS:StartMenuDir"

; MUI 1.67 compatible ------

!include "MUI.nsh"

; MUI Settings

!define MUI_ABORTWARNING

!define MUI_ICON "FinalBuild\UU.ico"

!define MUI_UNICON "FinalBuild\UU.ico"

; Welcome page

!insertmacro MUI_PAGE_WELCOME

; License page

!insertmacro MUI_PAGE_LICENSE "FinalBuild\Licence.txt"

; Directory page

!insertmacro MUI_PAGE_DIRECTORY

; Start menu page

var ICONS_GROUP

!define MUI_STARTMENUPAGE_NODISABLE

!define MUI_STARTMENUPAGE_DEFAULTFOLDER "University of Ulster - Secure PDA"

!define MUI_STARTMENUPAGE_REGISTRY_ROOT "${PRODUCT_UNINST_ROOT_KEY}"

!define MUI_STARTMENUPAGE_REGISTRY_KEY "${PRODUCT_UNINST_KEY}"

!define MUI_STARTMENUPAGE_REGISTRY_VALUENAME "${PRODUCT_STARTMENU_REGVAL}"

!insertmacro MUI_PAGE_STARTMENU Application $ICONS_GROUP

; Instfiles page

!insertmacro MUI_PAGE_INSTFILES

; Finish page

!define MUI_FINISHPAGE_RUN "$INSTDIR\Install.bat"

!define MUI_FINISHPAGE_SHOWREADME "$INSTDIR\ReadMe.Doc"

!insertmacro MUI_PAGE_FINISH

; Uninstaller pages

!insertmacro MUI_UNPAGE_INSTFILES

; Language files

!insertmacro MUI_LANGUAGE "English"

; MUI end ------

Name "${PRODUCT_NAME} ${PRODUCT_VERSION}"

OutFile "University of Ulster - Secure PDA Setup.exe"

InstallDir "$PROGRAMFILES\University of Ulster - Secure PDA"

InstallDirRegKey HKLM "${PRODUCT_DIR_REGKEY}" ""

ShowInstDetails show

ShowUnInstDetails show

Section "MainSection" SEC01

 SetOutPath "$INSTDIR"

 SetOverwrite try

 File "FinalBuild\ASRDisp.exe"

 File "FinalBuild\BatMemTime.CAB"

 File "FinalBuild\certin.xml"

 File "FinalBuild\CertInstall.bat"

 SetOutPath "$INSTDIR\devices\wce400\armv4"

 File "FinalBuild\devices\wce400\armv4\cerdisp2.exe"

 File "FinalBuild\devices\wce400\armv4\KillProc.exe"

 SetOutPath "$INSTDIR\devices\wce400\armv4t"

 File "FinalBuild\devices\wce400\armv4t\cerdisp2.exe"

 File "FinalBuild\devices\wce400\armv4t\KillProc.exe"

 SetOutPath "$INSTDIR\devices\wce400\mips16"

 File "FinalBuild\devices\wce400\mips16\CERDISP2.exe"

 File "FinalBuild\devices\wce400\mips16\KillProc.exe"

 SetOutPath "$INSTDIR\devices\wce400\mipsii"

 File "FinalBuild\devices\wce400\mipsii\CERDISP2.exe"

 File "FinalBuild\devices\wce400\mipsii\KillProc.exe"

 SetOutPath "$INSTDIR\devices\wce400\mipsii_fp"

 File "FinalBuild\devices\wce400\mipsii_fp\CERDISP2.exe"

 File "FinalBuild\devices\wce400\mipsii_fp\KillProc.exe"

 SetOutPath "$INSTDIR\devices\wce400\mipsiv"

 File "FinalBuild\devices\wce400\mipsiv\CERDISP2.exe"

 File "FinalBuild\devices\wce400\mipsiv\KillProc.exe"

 SetOutPath "$INSTDIR\devices\wce400\mipsiv_fp"

 File "FinalBuild\devices\wce400\mipsiv_fp\CERDISP2.exe"

 File "FinalBuild\devices\wce400\mipsiv_fp\KillProc.exe"

 SetOutPath "$INSTDIR\devices\wce400\sh3"

 File "FinalBuild\devices\wce400\sh3\CERDISP2.exe"

 File "FinalBuild\devices\wce400\sh3\KillProc.exe"

 SetOutPath "$INSTDIR\devices\wce400\sh4"

 File "FinalBuild\devices\wce400\sh4\CERDISP2.exe"

 File "FinalBuild\devices\wce400\sh4\KillProc.exe"

 SetOutPath "$INSTDIR\devices\wce400\x86"

 File "FinalBuild\devices\wce400\x86\CERDISP2.exe"

 File "FinalBuild\devices\wce400\x86\KillProc.exe"

 SetOutPath "$INSTDIR"

 File "FinalBuild\install.bat"

 File "FinalBuild\Install.vbs"

 File "FinalBuild\itsutils.dll"

 File "FinalBuild\Licence.txt"

 File "FinalBuild\mvspda.cab"

 File "FinalBuild\OriginalInstall.vbs"

 File "FinalBuild\Password.cpl"

 File "FinalBuild\PDAClient.CAB"

 File "FinalBuild\pdacopy.exe"

 File "FinalBuild\pdel.exe"

 File "FinalBuild\pdir.exe"

 File "FinalBuild\pget.exe"

 File "FinalBuild\pkill.exe"

 File "FinalBuild\pmkdir.exe"

 File "FinalBuild\pps.exe"

 File "FinalBuild\pput.exe"

 File "FinalBuild\preboot.exe"

 File "FinalBuild\pregutl.exe"

 File "FinalBuild\profile.exe"

 File "FinalBuild\prun.exe"

 File "FinalBuild\psynctime.exe"

 File "FinalBuild\RapiConfig.exe"

 File "FinalBuild\RapiConfigOut.xml"

 File "FinalBuild\rapistart.exe"

 File "FinalBuild\rar.ppc_arm.cab"

 File "FinalBuild\ReadMe.Doc"

 File "FinalBuild\readme.txt"

 File "FinalBuild\UU.ico"

; Shortcuts

 !insertmacro MUI_STARTMENU_WRITE_BEGIN Application

 CreateDirectory "$SMPROGRAMS\$ICONS_GROUP"

 CreateShortCut "$SMPROGRAMS\$ICONS_GROUP\University of Ulster - Secure PDA Setup.lnk" "$INSTDIR\install.bat"

 CreateShortCut "$DESKTOP\University of Ulster - Secure PDA Setup.lnk" "$INSTDIR\install.bat"

 CreateShortCut "$SMPROGRAMS\$ICONS_GROUP\PDA Remote Control.lnk" "$INSTDIR\ASRDisp.exe"

 !insertmacro MUI_STARTMENU_WRITE_END

SectionEnd

Section -AdditionalIcons

 !insertmacro MUI_STARTMENU_WRITE_BEGIN Application

 WriteIniStr "$INSTDIR\${PRODUCT_NAME}.url" "InternetShortcut" "URL" "${PRODUCT_WEB_SITE}"

 CreateShortCut "$SMPROGRAMS\$ICONS_GROUP\Website.lnk" "$INSTDIR\${PRODUCT_NAME}.url"

 CreateShortCut "$SMPROGRAMS\$ICONS_GROUP\Uninstall.lnk" "$INSTDIR\uninst.exe"

 !insertmacro MUI_STARTMENU_WRITE_END

SectionEnd

Section -Post

 WriteUninstaller "$INSTDIR\uninst.exe"

 WriteRegStr HKLM "${PRODUCT_DIR_REGKEY}" "" "$INSTDIR\ASRDisp.exe"

 WriteRegStr ${PRODUCT_UNINST_ROOT_KEY} "${PRODUCT_UNINST_KEY}" "DisplayName" "$(^Name)"

 WriteRegStr ${PRODUCT_UNINST_ROOT_KEY} "${PRODUCT_UNINST_KEY}" "UninstallString" "$INSTDIR\uninst.exe"

 WriteRegStr ${PRODUCT_UNINST_ROOT_KEY} "${PRODUCT_UNINST_KEY}" "DisplayIcon" "$INSTDIR\Install.bat"

 WriteRegStr ${PRODUCT_UNINST_ROOT_KEY} "${PRODUCT_UNINST_KEY}" "DisplayVersion" "${PRODUCT_VERSION}"

 WriteRegStr ${PRODUCT_UNINST_ROOT_KEY} "${PRODUCT_UNINST_KEY}" "URLInfoAbout" "${PRODUCT_WEB_SITE}"

 WriteRegStr ${PRODUCT_UNINST_ROOT_KEY} "${PRODUCT_UNINST_KEY}" "Publisher" "${PRODUCT_PUBLISHER}"

SectionEnd

Function un.onUninstSuccess

 HideWindow

 MessageBox MB_ICONINFORMATION|MB_OK "$(^Name) was successfully removed from your computer."

FunctionEnd

Function un.onInit

 MessageBox MB_ICONQUESTION|MB_YESNO|MB_DEFBUTTON2 "Are you sure you want to completely remove $(^Name) and all of its components?" IDYES +2

 Abort

FunctionEnd

Section Uninstall

 !insertmacro MUI_STARTMENU_GETFOLDER "Application" $ICONS_GROUP

 Delete "$INSTDIR\${PRODUCT_NAME}.url"

 Delete "$INSTDIR\uninst.exe"

 Delete "$INSTDIR\UU.ico"

 Delete "$INSTDIR\readme.txt"

 Delete "$INSTDIR\ReadMe.Doc"

 Delete "$INSTDIR\rar.ppc_arm.cab"

 Delete "$INSTDIR\rapistart.exe"

 Delete "$INSTDIR\RapiConfigOut.xml"

 Delete "$INSTDIR\RapiConfig.exe"

 Delete "$INSTDIR\psynctime.exe"

 Delete "$INSTDIR\prun.exe"

 Delete "$INSTDIR\profile.exe"

 Delete "$INSTDIR\pregutl.exe"

 Delete "$INSTDIR\preboot.exe"

 Delete "$INSTDIR\pput.exe"

 Delete "$INSTDIR\pps.exe"

 Delete "$INSTDIR\pmkdir.exe"

 Delete "$INSTDIR\pkill.exe"

 Delete "$INSTDIR\pget.exe"

 Delete "$INSTDIR\pdir.exe"

 Delete "$INSTDIR\pdel.exe"

 Delete "$INSTDIR\pdacopy.exe"

 Delete "$INSTDIR\PDAClient.CAB"

 Delete "$INSTDIR\Password.cpl"

 Delete "$INSTDIR\OriginalInstall.vbs"

 Delete "$INSTDIR\mvspda.cab"

 Delete "$INSTDIR\Licence.txt"

 Delete "$INSTDIR\itsutils.dll"

 Delete "$INSTDIR\Install.vbs"

 Delete "$INSTDIR\install.bat"

 Delete "$INSTDIR\devices\wce400\x86\KillProc.exe"

 Delete "$INSTDIR\devices\wce400\x86\CERDISP2.exe"

 Delete "$INSTDIR\devices\wce400\sh4\KillProc.exe"

 Delete "$INSTDIR\devices\wce400\sh4\CERDISP2.exe"

 Delete "$INSTDIR\devices\wce400\sh3\KillProc.exe"

 Delete "$INSTDIR\devices\wce400\sh3\CERDISP2.exe"

 Delete "$INSTDIR\devices\wce400\mipsiv_fp\KillProc.exe"

 Delete "$INSTDIR\devices\wce400\mipsiv_fp\CERDISP2.exe"

 Delete "$INSTDIR\devices\wce400\mipsiv\KillProc.exe"

 Delete "$INSTDIR\devices\wce400\mipsiv\CERDISP2.exe"

 Delete "$INSTDIR\devices\wce400\mipsii_fp\KillProc.exe"

 Delete "$INSTDIR\devices\wce400\mipsii_fp\CERDISP2.exe"

 Delete "$INSTDIR\devices\wce400\mipsii\KillProc.exe"

 Delete "$INSTDIR\devices\wce400\mipsii\CERDISP2.exe"

 Delete "$INSTDIR\devices\wce400\mips16\KillProc.exe"

 Delete "$INSTDIR\devices\wce400\mips16\CERDISP2.exe"

 Delete "$INSTDIR\devices\wce400\armv4t\KillProc.exe"

 Delete "$INSTDIR\devices\wce400\armv4t\cerdisp2.exe"

 Delete "$INSTDIR\devices\wce400\armv4\KillProc.exe"

 Delete "$INSTDIR\devices\wce400\armv4\cerdisp2.exe"

 Delete "$INSTDIR\CertInstall.bat"

 Delete "$INSTDIR\certin.xml"

 Delete "$INSTDIR\BatMemTime.CAB"

 Delete "$INSTDIR\ASRDisp.exe"

 Delete "$SMPROGRAMS\$ICONS_GROUP\Uninstall.lnk"

 Delete "$SMPROGRAMS\$ICONS_GROUP\Website.lnk"

 Delete "$DESKTOP\University of Ulster - Secure PDA Setup.lnk"

 Delete "$SMPROGRAMS\$ICONS_GROUP\University of Ulster - Secure PDA Setup.lnk"

 Delete "$SMPROGRAMS\$ICONS_GROUP\PDA Remote Control.lnk"

 RMDir "$SMPROGRAMS\$ICONS_GROUP"

 RMDir "$INSTDIR\devices\wce400\x86"

 RMDir "$INSTDIR\devices\wce400\sh4"

 RMDir "$INSTDIR\devices\wce400\sh3"

 RMDir "$INSTDIR\devices\wce400\mipsiv_fp"

 RMDir "$INSTDIR\devices\wce400\mipsiv"

 RMDir "$INSTDIR\devices\wce400\mipsii_fp"

 RMDir "$INSTDIR\devices\wce400\mipsii"

 RMDir "$INSTDIR\devices\wce400\mips16"

 RMDir "$INSTDIR\devices\wce400\armv4t"

 RMDir "$INSTDIR\devices\wce400\armv4"

 RMDir "$INSTDIR\devices\wce400"

 RMDir "$INSTDIR\devices"

 RMDir "$INSTDIR"

 DeleteRegKey ${PRODUCT_UNINST_ROOT_KEY} "${PRODUCT_UNINST_KEY}"

 DeleteRegKey HKLM "${PRODUCT_DIR_REGKEY}"

 SetAutoClose true

SectionEnd

Install.vbs

'**

'
Installation Completed

'

'
FileName:

Install.vbs

'
Copyright:

Paul Canning

'

41059102

'
Description:
This Utility is to be used to install Secure PDA.

'
Version:

1.0

'**

Dim WshShell,ShortCut,DesktopPath,LnkTitle,args,cmd,fso

Set WshShell = WScript.CreateObject("WScript.Shell")

Set fso = WScript.CreateObject("Scripting.FileSystemObject")

'Sync Time - Must be Run Twice, First Run

WshShell.Run "psynctime.exe"

'CryptoAPI call to enable Certificates

WshShell.Run "prun """"\windows\ctlpnl.exe cplmain.cpl 22"""" ",2,1

'WshShell.PopUp "Beginning Installation - Please Wait", 1, "Secure PDA"

'ROOT Certificate Installation

WshShell.Run "RapiConfig.exe /p certin.xml",2,1

'Start Remote Display

WshShell.Run "ASRDisp.exe"

'Copy installation Files

WshShell.Run "pput -f """"password.cpl"""" """"\Windows\Password.cpl"""" ",2,1

WshShell.Run "pput -f """"PDAClient.CAB"""" """"\PDAClient.CAB"""" ",2,1

WshShell.Run "pput -f """"mvspda.cab"""" """"\mvspda.cab"""" ",2,1

WshShell.Run "pput -f """"rar.ppc_arm.cab"""" """"\rar.ppc_arm.cab"""" ",2,1

WshShell.Run "pput -f """"BatMemTime.cab"""" """"\BatMemTime.cab"""" ",2,1

'Sync Time - Must be Run Twice, Second Run

WshShell.Run "psynctime.exe"

'WshShell.PopUp "All Files Copied, Root Certificate Installed.", 1, "Secure PDA"

'UUPOP

WshShell.Run "prun """"\windows\ctlpnl.exe"""" """"Password.cpl"""" ",2,1

WshShell.PopUp "Enter PIN. Click OK when PIN is Successfully Installed", 6000, "Secure PDA - Interaction Required"

'PocketRAR

WshShell.Run "prun wceload /noui """"\rar.ppc_arm.CAB"""" ",2,1

'WshShell.PopUp "Pocket RAR Successfully Installed", 1, "Secure PDA"

'PDAClient

WshShell.Run "prun wceload /noui """"\PDAClient.CAB"""" ",2,1

WshShell.PopUp "Configuration Occuring Please Wait", 3,"Secure PDA Please Wait"

WshShell.Run "CertInstall.bat"

WshShell.PopUp "PDAClient Sucessfully Installed. Please complete the Certificate Enrollment. For Help Check Build Documentation.", 6000,"Secure PDA - Interaction Required"

'BatMemTime

WshShell.Run "prun wceload /noui """"\BatMemTime.CAB"""" ",2,1

'WshShell.PopUp "BatMemTime Successfully Installed", 1, "Secure PDA"

'McAfee Pocket VirusScan

WshShell.Run "prun wceload /noui """"\mvspda.cab"""" ",2,1

'WshShell.PopUp "McAfee Pocket VirusScan Successfully Installed", 1, "Secure PDA"

'Complete

WshShell.PopUp "Secure PDA Installation Completed. PDA Will Restart now.", 4, "Secure PDA"

WshShell.Run "RapiStart iexplore 192.168.0.50",2,1

WshShell.Run "preboot.exe"

WshShell.Run "taskkill /IM ASRDisp.exe",2,1

cmxl.pl - Perl Script
takes a B64 encoded X509 certificate file and converts it to the PPC RAPI XML

provisioning format. Assumes target Certificate store is the ROOT store

Output file is CERTIN.XML

Assumes OpenSSL binaries are in the default Win32 install location

This assumes that the first certificate in the file is the one we want

$file=shift() or die "Please provide a B64 PEM encoded X509 Certificate filename\n";

print $file;

open (CERT , $file);

$started=0;

while (<CERT>) {

chomp;

$line=$_;

print "$line\n";

if ($line eq "-----BEGIN CERTIFICATE-----") {

$started = 1;

next;

}

next if $started == 0;

last if ($line eq "-----END CERTIFICATE-----");

$cert.=$line;

}

close (CERT);

$fred =`c:\\Openssl\\bin\\openssl x509 -in $file -fingerprint -sha1`;

if ($fred=~/SHA1 Fingerprint=(.*)\n/) {

$finger=$1;

print "Fingerprint=$finger\n";

$finger =~ s/://g;

print "Fingerprint=$finger\n";

} else {

die "Unable to fingerprint - not a valid X509 Cert\n";

}

$digest =uc ($finger);

$xx=$cert;

open (CXML,">certin.xml");

print CXML "<wap-provisioningdoc>\n";

print CXML " <characteristic type=\"CertificateStore\">\n";

print CXML " <characteristic type=\"ROOT\" >\n";

print CXML " <characteristic type=\"$digest\">\n";

print CXML " <parm name=\"EncodedCertificate\" value=\"\n";

while (length($xx) > 61) {

print CXML " ";

print CXML substr($xx,0,61);

print CXML "\n";

$xx=substr($xx,61);

}

print CXML " $xx";

print CXML "\"/>\n";

print CXML " <parm name=\"Role\" value=\"63\"/>\n";

print CXML " </characteristic>\n";

print CXML " </characteristic>\n";

print CXML " </characteristic>\n";

print CXML "</wap-provisioningdoc>\n";

close (CXML);

print "\nProvisioning file written - certin.xml";

Automated Build – User Documentation

ReadMe.Doc
[image: image58.png]
University of Ulster

Secure PDA Build Document

WARNING!

This will remove all previous data on the PDA.
Make sure any needed files have been backed up before continuing.

Step 1: Pre Build Configuration

Active sync is required. If ActiveSync is not already installed, please use this link download the required installer.

Remove any add-in cards connected to the PDA except wireless cards.
Back up all necessary files.

Perform a hard reset on the device and align the screen as prompted to set up the device and place it in the cradle. If you do not know how to hard reset the device, please check the vendor’s documentation.

The time, date and time zone will all be set automatically.

Connect the cradle to your laptop/desktop.

Ensure that ActiveSync is connected.

How to hard reset

For information on how to perform a hard and soft reset on IPAQ PDA’s, follow: -

http://h20000.www2.hp.com/bizsupport/TechSupport/DocumentIndex.jsp?contentType=SupportManual&locale=en_US&docIndexId=179111&taskId=101&prodTypeId=215348&prodSeriesId=322914
For information on how to perform hard and soft resets on Dell X30’s, follow: -

http://search.dell.com/results.aspx?k=X30+reset&ira=False&s=gen&ec=&l=en&cat=sup&cs=&c=us
For information on how to perform hard and soft resets on Dell X5’s, follow: -

http://search.dell.com/results.aspx?k=X5+reset&ira=False&s=gen&ec=&l=en&cat=sup&cs=&c=us
Step 2: ActiveSync Setup

Select Guest Partnership on the first screen.

[image: image59.png]
If you see the following screen you have been successful.

[image: image60.png]
Step 3: Install the Application

Run the University of Ulster – Secure PDA Setup.exe installer to place the required setup files on the computer.

This will also place links to the PDA install files, uninstaller for the application and also a link to Remote Control application for PDA’s on your Start Menu.

Please read the installation notes, select where you would like to install the application.

Select “Run University of Ulster – Secure PDA 1.5” to launch the PDA installer.

[image: image61.png]
Step 4: Install Secure PDA Build on Device

NB When the build begins, do not move the device, as all communications shall be done through the PC.

The Build will run automatically, and the first interaction required will be when you see this.

[image: image62.png]
Enter the PIN or Password, following the Guidelines at the end of this document.

Then click OK.

[image: image63.png]
The next interaction will be.

[image: image64.png]
Enter your Username, Password and the Domain. Then hit Login.

Then you should be prompted with.

[image: image65.png]
If this screen does not appear, follow the following steps.

Change the "Programs that Automatically Connect to the Internet should connect Using" to "My Work Network" at location,

Start->Settings->Connections->Connections->Advanced->Select networks. Now restart the PDA Client, by going Start, Programs, PDA Client.

If you get a red X after the Install Certificate, please restart from Step 1.

If you have succeeded click exit on screen, and click OK here.

[image: image66.png]
On Completion of the Build please click Yes on this screen.

[image: image67.png]
The device will now restart and prompt you for you PIN/Password.

Step 5: Setup of WLAN Profile

Remove device from the cradle and turn the Wireless LAN Adaptor on, following the manufacturer guide lines.

When the radio is on, you may be prompted with a screen like this.

[image: image68.png]
Press Start, Settings, Connections, Network Cards.

[image: image69.png]
On this screen, select UUMageeWLAN, or if this option does not appear, select Add New…

[image: image70.png]
If you have selected add new fill in the following screens as follows, if you have UUMageeWLAN, please ensure that your device has the corresponding settings selected.

[image: image71.png] [image: image72.png]
[image: image73.png]
On this screen select properties and select PKI certificate as follows.

[image: image74.png]
Select OK this screen and the previous, then click and hold on UUMageeWLAN and select connect.

The device will try and authenticate with the Access Point, when it does you will get this prompt.

[image: image75.png]
Fill in the required details and click OK.

It may take a few minuets to negotiate. A successful connection will have this symbol beside the speaker symbol.

[image: image76.png]
Once completed start Pocket Internet Explorer, and open http://192.168.0.50, if you see this screen you have successfully completed the build.

[image: image77.png]
Password/PIN Rules

Password Rule Guideline

Must be at least 8 and less than 15 characters long.

Must not begin with an exclamation point [!] or a question mark [?].

Must not contain any spaces.

Must contain only letters, numerals and some special characters.

First three characters cannot be the same.

Must contain at least one alpha, at least one numeric and at least one special character.

Must not be the same as one of your previous 8 passwords

PIN Rule Guideline

Pin Must be 6 numbers long

Pin Must not contain any spaces

Pin Must contain only numbers

First 3 Numbers must not be the same

First 3 Numbers must not be sequential

First 3 Numbers must not be reverse sequential

You can not reuse the last Pin.

Problems, Issues or Questions

If you have any problems that are not covered with in this document, please contact a technician or engineer on site.

For contact information please reference

http://www.infm.ulst.ac.uk/
Document Revision

Paul Canning

Rev 1

15/03/06

Paul Canning

Rev 2

01/04/06

Paul canning

Rev 3

19/04/06

Licence.txt

 WARNING!

 This will remove all previous data on the PDA.

Make sure any needed files have been backed up before continuing.

===

Install Notes

===

Ensure That the PDA has been hard reset and initial setup complete.

For Further Information, Please Check the ReadMe.Doc in the Installation Directory

===

Licence

===

University of Ulster Reserves all rights and privileges.

The University of Ulster will not be held account able for any damage to data or hardware as

a result of this Application or any part there of.

Users are responsible for their data and hardware.

The use of these materials without the expressed permission of the author and/or the University

Don't Be Bold.

There you're Told.

All Rights reserved etc

Sub Sections Belong to Relevant Third Parties

===
Appendix J – Power on Password Test Results
Product Requirements

	Reference Number
	Description

	R01
	Password activation after power up and suspend

	R02
	Strong Password/PIN enforced

	R03
	Ability to change Strong Password rules

	R04
	Application must be hidden and always on

	R05
	Wiping of devices

	R06
	Changing of Passwords

	R07
	Password History

	R08
	Secure storage of passwords

	R09
	Full screen keyboard

	R10
	PDA secure while in the cradle

Test Cases & Results
	Test#
	Test Objective
	Procedure for Testing
	Expected Results
	Results

	1.
	Check meets “Rule: Must be at least 8 and less than 15 characters long” (R02)
	Try to enter a password that does not pass this rule only
	Password should not be accepted and the user should be prompted for another
	Pass – Axim X30

Pass – Axim X5

Pass – Toshiba e800

	2.
	Check meets “Rule: Must contain only letters, numerals and some special characters” (R02)
	Try to enter a password that does not pass this rule only
	Password should not be accepted and the user should be prompted for another
	Pass – Axim X30

Pass – Axim X5

Pass – Toshiba e800

	3.
	Check meets “Rule: Must not contain spaces” (R02)
	Try to enter a password that does not pass this rule only
	Password should not be accepted and the user should be prompted for another
	Pass – Axim X30

Pass – Axim X5

Pass – Toshiba e800

	4.
	Check meets “Rule: Must contain at least one alpha, at least one numeric and at least one special character” (R02)
	Try to enter a password that does not pass this rule only
	Password should not be accepted and the user should be prompted for another
	Pass – Axim X30

Pass – Axim X5

Pass – Toshiba e800

	5.
	Check meets “Rule: Must not begin with an exclamation point [!] or a question mark [?]” (R02)
	Try to enter a password that does not pass this rule only
	Password should not be accepted and the user should be prompted for another
	Pass – Axim X30

Pass – Axim X5

Pass – Toshiba e800

	6.
	Check meets “Rule: First three characters cannot all be the same” (R02)
	Try to enter a password that does not pass this rule only
	Password should not be accepted and the user should be prompted for another
	Pass – Axim X30

Pass – Axim X5

Pass – Toshiba e800

	7.
	Check meets “Rule: Must not be the same as one of your previous 8 passwords” (R02)
	Try to enter a password that does not pass this rule only
	Password should not be accepted and the user should be prompted for another
	Not Implemented

	8.
	UUPOP must be activated after power up (R01)
	· Power up the PDA
· Allow PDA to go into suspend

· Bring out of suspend
	User should be prompted to enter their password before being granted access when they power the device up but not after coming out of suspend
	Pass – Axim X30

Pass – Axim X5

Pass – Toshiba e800

	9.
	Application must be hidden and always on (R04)
	· Try disabling application

· Try to uninstall the application

· Try stopping the application from the list of running programs

	The user should not be able to stop the application in any of these ways
	Pass – Axim X30

Pass – Axim X5

Pass – Toshiba e800

	10.
	Wiping of devices (R05)
	Perform an attack on the device. An attack is defined as entering a password incorrectly 5 times (3 attempts, wait 30 mins, two attempts)
	A hard reset should be performed on the device and all data should be erased
	Pass – Axim X30

Pass – Axim X5

Pass – Toshiba e800

	11.
	Secure storage of passwords (R08)
	Use of registry editor and explorer.
	Plain text storage of password not found.
	Pass – Axim X30

Pass – Axim X5

Pass – Toshiba e800

	12.
	Wiping of password after a hard reset (R08)
	Perform a hard reset on the PDA
	Any password data should no longer remain on the PDA
	Pass – Axim X30

Pass – Axim X5

Pass – Toshiba e800

	13.
	PDA in cradle (R10)
	Place the PDA in it’s docking station
	The user should be prompted for their password before they can sync with their desktop/laptop
	Pass – Axim X30

Pass – Axim X5

Pass – Toshiba e800

	18.
	Changing passwords (R06)
	Change password in Settings
	The password should be changed the next time the user logs in
	Pass – Axim X30

Pass – Axim X5

Pass – Toshiba e800

Final Notes
Due to the size of the project, not all code has been included within the report. All header files and some other source code have been left out.
Notes that were deployed with the third party tools have also been omitted.
For the full code, other source files and documentation on third party elements please consult with the CD supplied.
IV

Ciphertext

Chipher

text

XOR

Key stream

RC4

Secret Key

Initialisation Vector

CRC

Plaintext

CRC

Plaintext

Requirements Specification

System & Software Design

Implementation & Component Testing

Integration & System Testing

Operation & Maintenance

Implementation & Component Testing

System & Software Design

Requirements Specification

� Please note that both Password and PIN are interchangeable though out this document.

� A visual signalling apparatus with flags, lights, or mechanically moving arms, as one used on a railroad.

� � HYPERLINK "http://www.thocp.net/reference/internet/internet1.htm" ��http://www.thocp.net/reference/internet/internet1.htm�

� � HYPERLINK "http://www.intel.com/standards/case/case_802_11.htm" ��http://www.intel.com/standards/case/case_802_11.htm�

� � HYPERLINK "http://www.webopedia.com/TERM/W/Wi_Fi.html" ��http://www.webopedia.com/TERM/W/Wi_Fi.html�

� http://www.intel.com/standards/case/case_802_11.htm

� Mbps is an abbreviation for megabits per second. It refers to data transfer speeds as measured in megabits.

� RSA Security – � HYPERLINK "http://www.rsasecurity.com/" ��http://www.rsasecurity.com/�

� � HYPERLINK "http://www.wi-fiplanet.com/tutorials/article.php/1368661" ��http://www.wi-fiplanet.com/tutorials/article.php/1368661�

� IV – Initialisation Vector for further information please check WEP Encryption Process in the Appendices

� � HYPERLINK "http://www.drizzle.com/~aboba/IEEE/rc4_ksaproc.pdf" ��http://www.drizzle.com/~aboba/IEEE/rc4_ksaproc.pdf�

� War Driving – To drive around looking for open or, weakly secured wireless networks (WEP protected networks and now WPA).

� � HYPERLINK "http://www.wi-fi.com/opensection/pdf/wi-fi_protected_access_overview.pdf" ��http://www.wi-fi.com/opensection/pdf/wi-fi_protected_access_overview.pdf�

� 802.11i – Ratification can be found at http://standards.ieee.org/getieee802/download/802.11i-2004.pdf

� � HYPERLINK "http://www.wi-fi.org/OpenSection/secure.asp?TID=2#WPA2" ��http://www.wi-fi.org/OpenSection/secure.asp?TID=2#WPA2�

� � HYPERLINK "http://www.intel.com/technology/magazine/standards/80211i-0505.htm" ��http://www.intel.com/technology/magazine/standards/80211i-0505.htm�

� � HYPERLINK "http://librenix.com/?inode=2629" ��http://librenix.com/?inode=2629�

�� HYPERLINK "http://msdn.microsoft.com/webservices/webservices/understanding/webservicebasics/default.aspx?pull=/library/en-us/dnwebsrv/html/webservbasics.asp" ��http://msdn.microsoft.com/webservices/webservices/understanding/webservicebasics/default.aspx?pull=/library/en-us/dnwebsrv/html/webservbasics.asp�

� .asmx is a .NET Framework extension for URLs in XML based web services.

�http://www.windowsnetworking.com/articles_tutorials/Windows_2003_Active_Directory_Overview.html

� http://en.wikipedia.org/wiki/Active_Directory

� http://www.apache.org/

� http://en.wikipedia.org/wiki/Certification_Authority

� http://en.wikipedia.org/wiki/Radius_server

� http://www.networkdictionary.com/protocols/radius.php

� � HYPERLINK "http://technet2.microsoft.com/WindowsServer/en/Library/8832c551-939a-4b7e-b1b5-c2a0ae8651ce1033.mspx" ��http://technet2.microsoft.com/WindowsServer/en/Library/8832c551-939a-4b7e-b1b5-c2a0ae8651ce1033.mspx�

� � HYPERLINK "http://tftpd32.jounin.net/" ��http://tftpd32.jounin.net/�

� Soft Reset – Where the PDA resets it self similar to restarting a desktop PC.

� Hard Reset – Where the PDA resets itself back to factory defaults. Similar to Formatting and reinstalling the OS on a desktop PC.

� � HYPERLINK " http://www.xs4all.nl/~itsme/projects/xda/tools.html" �� http://www.xs4all.nl/~itsme/projects/xda/tools.html�

� This is preinstalled on the PDA.

�� HYPERLINK " http://www.geocities.com/tomgigear77/Software.html" �� http://www.geocities.com/tomgigear77/Software.html�

� � HYPERLINK "http://www.rarlab.com" ��http://www.rarlab.com�

� � HYPERLINK "http://www.mcafee.com" ��http://www.mcafee.com�

� � HYPERLINK "http://www.rsasecurity.com/" ��http://www.rsasecurity.com/�

� � HYPERLINK "http://en.wikipedia.org/wiki/PKCS" ��http://en.wikipedia.org/wiki/PKCS�

� � HYPERLINK "http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncapi/html/certenrollment.asp" ��http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncapi/html/certenrollment.asp�

� � HYPERLINK "http://www.pocketpcdn.com/libraries/stpasswordmanager.html" ��http://www.pocketpcdn.com/libraries/stpasswordmanager.html�

� Appendix I – Automated Build User Documentation – ReadMe.doc

� � HYPERLINK "http://www.pocketpcdn.com/articles/hardreset.html" ��http://www.pocketpcdn.com/articles/hardreset.html�

� � HYPERLINK "http://tftpd32.jounin.net/" ��http://tftpd32.jounin.net/�

� � HYPERLINK "http://www.jacco2.dds.nl/networking/crtimprt.html" ��http://www.jacco2.dds.nl/networking/crtimprt.html�

� � HYPERLINK "http://msdn.microsoft.com/library/default.asp?url=/library/en-us/guide_ppc/html/ppc_wce51oricertificatestorecspexamplesozup.asp" \t "_blank" �http://msdn.microsoft.com/library/default.asp?url=/library/en-us/guide_ppc/html/ppc_wce51oricertificatestorecspexamplesozup.asp�

� � HYPERLINK "http://hmne.sourceforge.net/" ��http://hmne.sourceforge.net/�

� A Microsoft API that provides services enabling developers to secure applications using cryptography.

� Strong password is at least 8 digits in length, and must contain at least one letter, one numeral and one special character (e.g. !, *)

� This function has been disabled to stop users from requesting certificates, ensuring that procedure is followed.

� � HYPERLINK "http://www.good.com/" ��http://www.good.com/�

PAGE
100

Paul Canning BEng (Hons) Electronics and Computers Systems

_1207849310.xls
Sheet1

				Name		Usage

		PKCS#7		Cryptographic Message Syntax Standard		Used to sign and/or encrypt messages under a PKI. Used for certificate dissemination, for instance as a response to a PKCS#10 message.

		PKCS#10		Certification Request Standard		Format of messagse sent to a Certificate Authority to request certification of a public key.

		PKCS#12		Personal information Exchange Syntax Stanard		Defines a file format commonly used to store private keys with accompanying Public key certificates protected with a password-based symmetric key.

