the semantic web

By

Gary Gumbleton

A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science (Hons)

University of Ulster (Magee)

December 2002

Abstract

The World Wide Web (WWW) has grown at a phenomenal rate since its conception, due to its many advantages, not least the availability of information it provides. However this growth has begun to show some of the limits of the WWW, particularly in respect to the ability of machines to gather information from the vast amounts of text residing on it. One of the currently proposed solutions is to asoatate the web context with explicit meaning so that machines will be able to make better use of it and there-by better able to assist the human user of the web, there-by creating a Semantic Web. To date there has been many tool and languages aimed at achieving this goal. Digital media is fast becoming an integral part of the way companies sell products, support customers, and communicate with employees on a day-to-day basis. To date, the possibilities for delivering personalized digital media experiences have been limited however more and more companies are entering the marketplace to offer personal digital media delivery. These companies provide products and services that offer an instant solution for digital media deployments.

One such idea that requires further investigation is where users can connect to an existing database of media files (e.g. political interviews, new snippets, football manager pre-match interviews etc) and retrieves a selection of media clips. Imagine the case of Sir Alex Ferguson giving an interview before a game. One could then associate his interview with that of another premiership manager. Therefore whenever a user requests one of these interviews, the other one could also be offered to this user.

The role of this thesis is therefore to examine literature surrounding the semantic web and to develop a solution/methodology that will demonstrate uses of the semantic web in conjunction with a service offering as just described.

Acknowledgments

I would like to take this opportunity to thank all those who have helped me in this thesis. Especially Mr. Kevin Curran my project supervisor, whose idea it was for me to take up this thesis.

Table of Contents

iAbstract

iiAcknowledgments

iiiTable of Contents

viList of figures

11 Introduction

11.1 Objectives

21.2 Thesis Outline

42 The semantic web

42.1 Components of the Semantic Web

52.2 The Architecture of the Semantic Web

62.2.1 Uniform Resource Identifier Layer

62.2.2 XML and XML Schema Layer

102.2.3 Resource Development Language (RDF)

122.2.4 Ontologies

132.2.5 Logic

142.2.6 Proof

142.2.7 Trust

142.3 Chapter Summary

153 DAML + OIL

153.1 More Expression on Properties

163.2 Broadening the concept of classes

183.3 Chapter Summary

194 RDF VCards

194.1 Basic Properties of VCards

204.2 Grouping and Order

204.3 VCards and XML Name Spaces

214.4 Other VCard Characteristics

224.5 Chapter Summary

235 Jena

235.1 Jena’s features

245.2 Chapter Summary

256 Requirements & Design

256.1 Functional Requirements

266.2 Non-Functional Requirements

276.3 Hardware and Software Requirements

276.4 Overview of Methodologies

276.4.1 Waterfall

286.4.2 Evolutionary Prototyping

286.4.3 Reuse

286.4.4 The Spiral model

286.4.5 Chosen Methodology

297 Design

297.1 Design of the ontology

307.1.1 Determine the domain and scope of the ontology

307.1.2 Consider reusing existing ontologies

307.1.3
Enumerate important terms in the ontology

307.1.4 Define the class and class hierarchy

317.1.5 Define the facets of the classes

317.1.6 Create instances

327.2 Design of the Query System

357.3 High Level Use Case of system

357.3.1 Use Case Name – Select Ontology

367.3.2
Use Case Name – Perform Queries on Ontology

387.3.3
Use Case Name – Build RDF VCard Ontology

397.4 State Chart – Build RDF VCard Ontology

407.5 Sequence Diagram – Build RDF VCard Ontology

418 Implementation

418.1 Reading the RDF File

428.2 Creating Your Own RDF File

438.3 Querying the RDF File

438.3.1 Display Everybody

448.3.2 Search for People by Location

448.3.3 Search for People by Age

458.3.4 Search for People by Position

458.3.5 Search for People by Team

468.3.6 Search for People by Full Name

468.3.7 Search for People by Forename or Surname

489 Testing and Evaluation

489.1 Verification and Validation

499.2 Statistical Testing

499.2.1 Loading file

519.2.2 Build Your Own Ontology

529.2.3 Display Ever-body

529.2.4 Search for People by Location

539.2.5 Search for People by Age

539.2.6 Search for People by Position

549.2.7 Search for People by Team

549.2.8 Search for People by Full Name

559.2.9 Search for People by Surname

559.2.10 Search for People by Forename

569.3 Defect Testing

569.3.1 Title: - Loading file

569.3.2 Title: - Menu Selection

579.3.3 Title: - Query for Property That Does Not Exist

589.3.4 Title: - Create Own Ontology

6010 Conclusion

iReferences

iiiAppendix A

iiiList of Queries

List of figures

Number

 Page

6Figure 1: The layered architecture of the SW

8Figure 2: Example XML structure

9Figure 3: Example of person structure represented in different ways.

9Figure 4: Example XML structure Version 2

10Figure 5: An example RDF diagram (Triple) [W6]

11Figure 6: An RDF Graph [W6]

12Figure 7: Example RDF Syntax

16Figure 8: Example RDFS statement

16Figure 9: Example DAML + OIL statement

17Figure 10: An example DAML + OIL enumeration

17Figure 11: Example DAML + OIL property restriction

21Figure 12: Example RDF VCard showing use of Properties with Attributes

24Figure 13: Example Jena Query

32Figure 14: Example RDF VCard ontology

33Figure 15: Jena architecture

39Figure 16 State chart For Build RDF VCard Ontology

40Figure 17 Sequence Diagram For Build RDF VCard Ontology

1 Introduction

The Semantic Web (SW) is a vision of the current Web where its information is more efficiently linked up in such a way so that machines can more easily process its information. Tim Berners-Lee, inventor of the WWW, URI’s, HTTP and HTML, is credited with created the SW. Currently there is a large team of people at various academic institutes across the world working on improving and extending the system to make the goal come true. They are doing this by creating applications for the Semantic Web, making publications and creating languages for the Semantic Web to be published with.

It is generating such an interest not just because Tim Berners-Lee is advocating it but also because it aims to solve the largest problem faced by the web at present. This problem is that information is hidden away on it in HTML documents, which are easy for humans to get information out of but are difficult for machines to do so. But the question has to be asked how it will work? As already mentioned there is a large group of people working on this coming up with different solutions, for representing the data and storing it. But there is a general consensus that says it should be built out of the current technology of the Web, in general using URI’s and the eXtensive Mark-up Language (XML).

1.1 Objectives

Digital media is fast becoming an integral part of the way companies sell products, support customers, and communicate with employees on a day-to-day basis. To date, the possibilities for delivering personalized digital media experiences have been limited however more and more companies are entering the marketplace such as hookablemedia
 to offer personal digital media delivery. These companies provide products and services that offer an instant solution for digital media deployments. Their products enable providers of audio and video content to develop innovative solutions that enable easy access. Their solution and services divisions enable corporate organizations to reap the benefit of streaming technologies, and to seamlessly integrate these with traditional corporate information assets.

One such idea that requires further investigation is where users can connect to an existing database of media files (e.g. political interviews, new snippets, football manager pre-match interviews etc) and retrieves a selection of media clips. Imagine the case of Sir Alex Ferguson giving an interview before a game. One could then associate his interview with that of another premiership manager (say Arsene Wenger). Therefore (using a terrible example of the semantic web) - whenever a user requests one of these interviews, the other one could also be offered to this user. The role of this thesis is therefore to

· Examine literature surrounding the semantic web and

· Develop a solution that will demonstrate uses of the semantic web in conjunction with a service offering as just described.

 1.2 Thesis Outline

Section 2.1 gives an overview of the main components of the SW as suggested by Tim Berners-Lee. We examine topics such as expression meaning, knowledge representation, ontologies and software agents. Then in section 2.2 it we move on to show how Tim Berners-Lee at the XML 2000 conference put forward a proposal for the architecture for the SW. In this section we look at this architecture and how it interlinks with the other proposed layers. Section 3 takes a closer look at DAML + OIL which is being hyped as the main web ontology language for the SW. It looks at what makes it so different to things like the extensive markup language, how it gives more meaning to properties and how it broadens the concept of classes. Section 4 describes RDF VCards what they are and why they were developed. It also explains their properties and characteristics as a mechanism for providing rich RDF descriptions of person details. Section 5 looks into Jena an API written in Java for manipulating RDF models. Explaining a bit about its history, the goals it was created to solve and the features it posses to realize these goals. Section 6 goes on to the proposed requirements and design phase. Looking at the functional and non-functional requirements of the project as well hardware and software requirements and different design methodologies for the project. Section 7 takes a closer look at a proposed design of the project with both a possible layout for the system and for the RDF files that hold the semantic information. Section 8 deals with the implementation of the proposed system explaining how certain objectives of the system were achieved and explaining the code that was used to do so. Section 9 give details of the testing carried out on the system both statistical and defect testing. Section 10 concludes the thesis highlighting so of the information found out though the research for this thesis and gives a brief insight to the thoughts of the author of the paper on this thesis.

2 The Semantic Web

The semantic web is not a completely new form of the WWW instead it is an extension of the current web aimed at overcoming some of the disadvantages of the current web. In particular it is concerned with making the Web more readable for computers so they would be able to interpret it better and as a result be better able to assist us. Tim Berners-Lee, Director of the World Wide Web Consortium (W3C) states that “The Semantic Web is not a separate Web but an extension of the current one, in which information is given well-defined meaning, better enabling computers and people to work in cooperation” [W4].

2.1 Components of the Semantic Web

To achieve this goal the authors of the report “The Semantic Web” suggested that four components were needed.

· Expressing Meaning - The Semantic Web will bring structure to the meaningful content of Web pages, creating an environment where software agents roaming from page to page can readily carry out sophisticated tasks for users. [W4].

· Knowledge representations (KR) are need for the semantic web to function; the computers and software agents using it need to have access to structured information and inference rules in order to perform some reasoning. Also the rules and information must be powerful enough to describe complex terms. Languages like the Extensible Mark-up Language (XML) and Resource Description Framework (RDF) are already in place and helping to make this happen along with newer languages such as here and here, which shall all be described in more detail later on.

· Ontologies are a document or file that formally defines the relationship between terms. On the web the most commonly used type of ontology used is taxonomy (subclass–super class) hierarchy, though they may not just be limited to this form. These taxonomy’s work on classes and descried the relationship between them together with their inference rules, they play a vital part in the semantic web. For example if a salary class is associated with a currency class and the currency class is then associated with a county class. The inference rules could then say that if an employee gets paid in British pounds then they work in the UK. Also you could have different ontologies pointing to each other so your ontology for “person” could point to someone else’s that is describing the same thing but using different terminology this would then increase the scope of the inference rules and make then more reliable.

· Agents are the programs that will gather the contents of the semantic web process them and exchange them with other agents. Off course for the agents to exchange information with each other there will have to be some degree of proof between them that the information they gathered is true. Digital signatures and proofs can overcome this.

2.2 The Architecture of the Semantic Web

In the XML 2000 conference, [XML00] Tim Berners-Lee gave a talk at which he described the architecture of the semantic web as illustrated in Figure 1. In it he descried the SW as being build upon the current web using some of the already existing technology to improve the functionality of the Web and to help enable it to its full potential.

[image: image1.png]Self-
desc.
doc.

Data

Trust

Rules
Data Proof e
£
Logic §,
w
Ontology vocabulary | §
=)
RDF + rdfschema 8

XML + NS + xmlschema

Unicode

Figure 1: The layered architecture of the SW

2.2.1 Uniform Resource Identifier Layer

The bottom layer is made up of Uniform Resource Identifier (URI). URI’s are a fundamental component of the web and are also the foundation of the SW. URI’s are a compact string of characters for identifying an abstract or physical resource” [Berners-Lee98b]. It is not a set of direction that tells a computer how to get to a specific site on the web (though it can also do this). Because anyone can create a URI and their ownership is clearly delegated they are the ideal building blocks for the web. Also because URI’s are not tied to a specific protocol, they can be used to access different ones. So when a new protocol is invented the same URI can be used to address the same resource.

2.2.2 XML and XML Schema Layer

The next layer is the XML and xmlschema layer. XML is a system for defining specialized markup languages that are used to transmit formatted data. This markup is used to encode instructions that can tell applications what to do with the information it refers to. It was created to make a version of SGML (Standard Generalized Mark-up Language) that would be as widely used on the Internet as HTML. The problem with HTML being that it did not allow machines to easily extract information from it as it was mainly designed to present information to humans and SGML was considered too difficult to implement just for a web browser. XML offers several advantages such as: -

· Because XML is a text based language it is platform and software independent this also has the knock on effect of making XML documents transmittable over networks using existing protocols.

· XML is easily read by humans

· Because it is a hierarchical structure it allows for powerful data constructs from databases and other applications.

The syntax of XML is similar to that of HTML, this is because both of them are derived from SGML with the exception that in XML we are describing the data not the format of the document. An example of a XML document is shown in Figure 2. XML allows authors of documents to create their own mark-up language, where the meaning of the information is placed in the document. The information placed into the document is called “elements”; these elements are encapsulated by start (<) and end tags (/>). Tag names are the word inside the start and end tags of elements for example dataBaseFootball would be an example tag name in Figure 2. Elements can contain attributes, other elements (giving the document a hierarchical structure) or a combination of the both. These tags tell the computer that (in the case of Figure 2) “Ferguson “ is a “Manager” but they do not tell the computer what a “Manager” is. Since XML cannot express the meaning of the tags it can cause problems for machine processing. As most processing applications require tag sets whose meanings have been agreed to some standard or convention.

[image: image2.jpg]<? Xml version="1.0"? >
<dataBaseFootball>

<team>

<manager> Ferguson </manager>
<name>Manchester United</name>
<leagueposition>3</leagueposition>
</team>

<team>

<manager>Venger, Arsen</manager>
<name>Arsenal</name>
<leagueposition>2</leagueposition>
</team>

<team>

<manager>Gerald Hupea</manager>
<name>Liverpool</name>
<leagueposition>1</leagueposition>
</team>

</dataBaseFootball>

Figure 2: Example XML structure

To help with this, “document type definition” (DTD) was created allowing for grammar to be defined. DTDs specify elements; the context of elements and which attributes in elements can be changed. Although DTDs allow for syntax in XML documents the semantics are still implicit. Meaning that a human infers the meaning of a DTD element by the name given to it as a comment in the DTD or it is described in a separate document. This makes it easy to exchange XML documents between people on a small scale as they can get together beforehand and design DTDs that will meet there combined needs. But it runs into problems when you scale it up and for example you want to integrate your DTD with similar one’s from multiple sources. One of these problems is exchanging representations of the same idea structure. As XML allows the author of the document to represent that data in there own way. This can lead to a simple thing like a name structure, being represented in different way as shown in Figure 3, causing a lack of semantics.

[image: image3.jpg]<Person>
<Name>Gary</Name>
</Person>
<Peron>
<Name><Forename>Gary</Forename></Name>
</Peron>

Figure 3: Example of person structure represented in different ways.

“XML Schema is an XML language for describing and constraining the content of XML documents.” [W3]. This gives us greater flexibility when defining a XML document. For example, Figure 2 could now be rewritten as in Figure 4.

[image: image4.jpg]<? Xml version="1.0" encoding="utf-8"? >
<xs: schema xmlns: xs="http://www.w3.0rg/2001/XMLSchema">
<dataBaseFootball>
<team>
<Xs: element team="character" minOccurs="0" maxOccurs="unbounded'
<manager> Ferguson </manager>
<name>Manchester United</name>
<leagueposition>3</leagueposition>
</team>
</dataBaseFootball>
</xs: schema>

Figure 4: Example XML structure Version 2

In this new version the mark up elements have been uniquely identified by use of a URL, doing so is called XML Namespacing. [W 10] define namespaces as “An XML namespace, is a collection of names identified by a URI reference [RFC2396]. Which are used in XML documents as element types and attribute names. XML namespaces differ from the "namespaces" conventionally used in computing disciplines in that the XML version has internal structure and is not, mathematically speaking, a set.“ By using namespaces everyone can create their own tags for XML documents and mix and match then with others created by different people. But XML Schema still suffers from the same semantic flaws as DTD.

2.2.3 Resource Development Language (RDF)

Though XML is good at letting you invent tags it can have problems with scalability. For example often the order in which elements appear in XML is significant, so keeping the correct order of data items on something as extensive as the Web could prove impractical. To help solve this RDF was developed by a number of different metadata communities under the umbrella flagship of the W3C, with the aim to develop a flexible architecture for supporting Metadata on the web. Its history derives from 1995 when the W3C developed PICS (Platform for Internet Content Selection), which was a mechanism for communicating the ratings of web pages from a server to a client (mainly with the aim to tell the client if a particular Web page was or wasn’t suitable for children) by using metadata. However for whatever reason PICS did not take off but it was clear that other metadata communities could use some of the infrastructure that had been developed. So the W3C created a working group to bring together the requirements of several different metadata groups and in 1998 they released these recommendations.

In its essence RDF is a method to express and process a series of simple assertions, such as “Ora Lassila created this page (Home/Lassila)”. This is called an RDF statement and illustrated it looks like Figure 5 comprising of nodes, labeled arcs and values. It consists of three parts a subject (Resource), predicate (Property) and an object (Literal) as shown in Table 1 with their corresponding values.

[image: image5.png]hitpiwwnww3 orgiHomefL assila

Creator

OraLassila

Figure 5: An example RDF diagram (Triple) [W6]

	 Subject (Resource)
	 http://www.w3.org/Home/Lassila.html

	 Predicate (Property)
	 Creator

	 Object (literal)
	 Ora Lassila

Table 1: Figure 5 broken up into consistence parts

RDF provides also provides a model for describing resources The basic concept behind it is that an object (a resource) is described throw a collection of properties called an RDF Description which itself consists of a property type and value, as long as that object has a unique URL address. In RDF values may be text, strings, numbers and so on, but they may also be other resources which themselves can have properties of their own. Figure 6 shows Figure 5 as an RDF description with some additional descriptive information.

[image: image6.png]hitpiwwnww3 orgiHomefL assila

hitp w3 orgistamlaiss7 40

OraLassila

lassila@w3.org

Figure 6: An RDF Graph [W6]

Because more descriptive information is provided in Figure 5 a unique identifier has to be provided about Ora Lassila, in Figure 6’s case Ora Lassila is given an staff number. This can be something like an employee number. This is needed for the unambiguous association of properties on resources. As the person Ora Lassila may be value of different property types. E.g. he may be the creator of index.html but may also be a value in a table “employees” for a company. This allows for the reuse of descriptive information.

[image: image7.jpg]<? Xml version="1.0"? >

<RDF xmlns = http://w3.org/TR/1999/PR-rdf-syntax-19990105#>
<xmlns: DC = "http://purl.org/DC#" >
<Description about =" http://www.w3.org/Home/Lassila.html " >
<DC: Creator> Ora Lassila </DC: Creator>

</Description>
</RDF>
</xml>

 QUOTE * MERGEFORMAT
Figure 7: Example RDF Syntax

RDF Schema is needed for the creation of controlled, sharable and extensible vocabularies. It extends RDF to include a larger reserved vocabulary with more complex semantic constraints allow users to create schemas of classes and properties using RDF. RDF then uses XML Namespaces in order to avoid confusion between two separate definitions of the same term, which could have conflicting meaning.

RDF can easily be marked up into XML as Figure 7 shows. You can also see the use of XML namespaces as RDF relies heavily on XML namespaces for disambiguating names.

2.2.4 Ontologies

The next Layer proposed for the SW is ontologies. Ontologies as already mentioned are fundamental to the SW, providing the mechanisms for the interchange of data between different Knowledge representations. T.R. Gruber describes ontologies as “A specification of a representational vocabulary for a shared domain of discourse -- definitions of classes, relations, functions, and other objects”[W2]. Today there is a great deal of research going on into this area, carried out by such groups as the DAML group, who in conjunction with the European initiative came up with DAML + OIL which is an extension of the RDF language. Other ontology languages include Simple HTML Ontology Extensions (SHOE) and the Ontology Exchange Language (XOL). The reasons of developing ontologies are:

· To share common understanding of the structure of information between people or machines

· To enables the reuse of knowledge

· To make it clear the domain assumptions

· To separate domain knowledge from the operational knowledge

· To analyze domain knowledge

To share common understanding of the structure of information is one of the more common reason for developing ontologies. Doing so allows will allow computer software agents to extract information from different sites that share the same ontologies and then go on to possibly use this information to answer queries on to use them as inputs to other queries. Enabling the reuse of knowledge allows us to save time in developing our own ontology. For example if a group of researchers develop a complex ontology and publish it other researcher can simply copy this again saving both time and money. Also if a large ontology needs to be built the researchers developing may be able to group together several smaller ones in order to achieve their goal. There are already lots of reusable ontologies on the web such as the DAML ontology library [W5] or Dublin core [W13]. By making clear the domain assumptions made about knowledge and it structure makes it easier to change these assumptions if our knowledge about the domain changes. This also makes it easier for new comers to the area that the ontology was written about to pick it up and continue on the work.

With the separation of domain knowledge from operational knowledge we can develop applications that use the same knowledge base but require different operational knowledge to carry out their own respective tasks. This again helps in the reuse of already existing ontologies. Once an ontology has been defined formal analyze of it can of the terms can begin. This can result in valuable information for when exciting are being attempted to be reused or updated. However for the SW to truly take off in the way the way that the original web has there must be software agents cheaply available in not free too people in order for them to construct new web sites. As creating ontologies or indeed using already existing one requires a great deal of fore knowledge about the knowledge domain. And to expecting everybody who wants to publish to the SW to posses this knowledge would prove unfounded.

2.2.5 Logic

The logical layer is the next layer. Here there needs to be a universal language that is expressive enough for the SW to help us carry out the complex tasks envisaged for the SW. The language on this layer has to be expressive enough to make inferences. For example to say that if X is descends from Y and Y descends from Z then also X descends from Z.

2.2.6 Proof

If the SW is to work there needs to be a method in place to validate a proof generated by something else. So it can say for example I used this rule that you trust on this database to validate you were to go to this meeting because your email address is in the table for people attending.

2.2.7 Trust

Trust on the SW is ensure that the documents used on the SW can from where they said they did and to verify that the person it says created them in fact did. This can be provided with the use of Digital signatures. Digital signatures are familiar to most people as it is the same technology that is used in encrypt and sign messages over secure web pages. Using digital signatures, it is possible to validate the signature by verifying that the certificate used to create a signature belongs to the entity that claims to have sent it. But off course we still have to trust that the supplier of the digital signature provides unique certificates and that nobody may steal or misuse them in any way.

2.3 Chapter Summary

We have just seen Tim Berners-Lee vision of the SW in it he described the SW being built on top of the infrastructure of the current Web using URI’s as it source and using metadata languages and ontologies to give formal meaning to the information contained in the documents. He also described a system of using digital signatures as a means of providing trust and proof that would enable the creation of powerful software agents that could use this information to carry out complex tasks for users.

3 DAML + OIL

RDF was developed at about the same time as XML with the aim to provide a language for modeling semi-structured metadata and enabling knowledge management systems. And it has proved to be successful because of its simplicity. But as RDF scope has expanded to include things like the SW, the limitations of its RDF Schema have become clear, as it lacks for catering data typing and a consistent expression for enumerations as well as other facilities. In response the DAML (DARPA Agent Mark-up Language) was set up and grouped its efforts with OIL (Ontology Inference Layer) another group working in the same area to provide a more sophisticated classification, who were using constructs from frame based AI (Artificial Intelligence). This resulted in a language that was able to express far more sophisticated classifications and property of resource than RDFS. The W3C is making the DAML + OIL specifications and its relationship with RDF and RDFS as a series of notes and have commissioned the WOWG (Web Ontology Working Group) to produce a new ontology language which is to be based upon DAML + OIL.

3.1 More Expression on Properties

DAML + OIL makes a separation between properties that relate object to object (called Object properties) and those that relate objects to datatype values (Datatype properties). There is also some change to the semantics of rdfs: domain and rdfs: range such as now a property can have multiple value ranges. In RDF and RDFS there is limited expression allowed on property declarations. E.g. somebody looking at Figure 8 would think that personal number properties were numbers. There were even declared as a literal. But literals can be any string including those that cannot be interpreted as numbers.

[image: image8.jpg]<rdfs:Property rdf:ID="PersonallNumber">
<rdfs:Label>Personal Number</rdfs:Label>
<rdfs:domain rdf:resource="#PNumber"/>
<rdfs:range rdf:resource="http://www.w3c.org/2000/01/rdf-schema
#Literal/>
</rdfs:Property>

Figure 8: Example RDFS statement

DAML + OIL overcomes this by restricting property values to data types that a defined in XSDL (XML Schema Definition Language) as-well as to user defined data types. So Figure 8 could be rewritten as shown in Figure 9.

[image: image9.jpg]<daml:DatatypeProperty rdf:ID="PersonalNumber">
<rdfs:label>Personal Number</rdfs:label>
<rdfs:domain rdf:resource="#PNumber"/>
<rdfs:range rdf:resource="http://www.w3.0rg/2000/10/XMLSchema#
nonNegativelnteger"/>
</daml:DatatypeProperty>

Figure 9: Example DAML + OIL statement

Properties in DAML + OIL can also be defined as being identical to each other by using daml: equivalentTo or daml: samePropertyAs. Other more expressive terms can be obtained with properties such as daml: UniqueProperty, daml: TransitiveProperty and daml: UnambiguousProperty.

3.2 Broadening the concept of classes

The most important facilities DAML + OIL provides is allowing designers to increase the expressivity’s in classifying resources. The daml: Class is defined as being a subclass of rdfs: Class and it new facilities. An example of this is the built in support for enumerations, which was lacking in RDF. An enumeration defines a class by giving an explicit list of its members. In RDFS you could define a class and then have instances of this class. But the problem was that someone could come along and add new instances. An example of one such enumeration in DAML + OIL is shown in Figure 10.

[image: image10.jpg]<daml:Class ID="Position">
<daml:oneOf parseType="daml:collection">
<daml:Thing rdf:ID="1st">
<rdfs:label>1st position</rdfs:label>
</daml:Thing>
<daml:Thing rdf:ID="2nd">
<rdfs:label>2nd position</rdfs:label>
</daml:Thing>
<daml:Thing rdf:ID="3rd">
<rdfs:label>3rd position</rdfs:label>
</daml:Thing>
</daml:oneOf>
</daml:Class>

Figure 10: An example DAML + OIL enumeration

In Figure 10 a DAML + OIL agent will be able to interpret the body of a property element as a special form of list, which is made up of each of the instances that appear in the element body. In this type of list you cannot add an item to the list without replacing another item. With DAML + OIL it is possible to say that one class is disjointed from another, so that the two classes will have no instances in common. This is achieved by using daml: disjointWith. DAML + OIL also allows for property restrictions which is a way to restrict classes to a set of resources based on particular properties of theirs, the number or the value of these properties. An example of this is shown in Figure 11.

[image: image11.jpg]<daml:Class rdf:ID="Fish">
<rdfs:label>Types of Fish</rdfs:label>
<rdfs:comment>A type of animal that lives in water</rdfs:comment>
<rdfs:subClassOf>
<daml:Restriction>
<daml:onProperty rdf:resource="#anatomy"/>
<daml:hasValue rdf:resource="#Fins"/>
</daml:Restriction>
</rdfs:subClassOf>
</daml:Class>

Figure 11: Example DAML + OIL property restriction

Figure 11 defines the fish class as a subclass of another class that is defined as a DAML + OIL restriction. These types of classes are defined by rules that specify what conditions of a resources properties has to be met for a resource to be a member of that class. Daml: onProperty identifies which property is to be checked. Daml: hasValue then declares that the property in question must have a particular value. So Figure 11 says that a fish is a subclass of all resources, which has at least one-piece anatomy property whose value is fins.

3.3 Chapter Summary

We have seen that DAML + OIL is becoming one of the leading Web ontology languages. How it has expanded on the limited expression allowed on property declarations in RDF and RDFS, to include such things as unique and transitive properties. We have also seen how it allows for more definition on classes such as support for enumerations and property restrictions.

4 RDF VCards

Some years ago, a number of companies got together to define a standard for electronic business cards, which was later developed by the International Mail Consortium and standardized by the IETF in RFC 2426 and became known as VCards.

4.1 Basic Properties of VCards

VCards consist of different property types describing different properties a person may want to put on a business card. The majority of these properties have strings or numbers as their values. Some of these include: -

· First Name

· Last Name

· Full Name (FN)

· Birthday (BDAY)

· Role

· Title

· Phone number

· E-Mail

· Address

· URI

A full list of the property types available can be viewed at [W14].

4.2 Grouping and Order

A VCard may have multiple values for a property type. To allow for this RDF provides three mechanisms:
· Bags

· Sequences

· Alternatives

An RDF Bag is to be used when there is no relevance to the order in which the values appear. But if the order is important RDF Sequence may be used. RDF Alternatives is used when there is a choice of values available for a property with each value being valid but dependent on some other externally defined factor the first value is the default.

4.3 VCards and XML Name Spaces

RDF uses XML name spaces to uniquely identify the metadata schema and version and the name space for VCards is www.w3.org/2001/vcard-rdf/3.0#. Which is the current version of VCards. Using a prefix, which contains the current version number, has the advantage that there is no need to provide a special version number amongst the property tags. It also means that there is no need for the “begin” and “end” types as XML encoding of RDF automatically tells when the description starts and ends.
4.4 Other VCard Characteristics

Various VCard properties have the ability to one or more parameter types for a value. This may be needed for example, if it is wished to show that a telephone number is a home not a work telephone number or that a particular address is the preferred one. To achieve this in RDF the <RDF: type> property is used. This allows for the speciation of the type of the resource by indicating a URI that represents that type. This URI will be:

www.w3.org/2001/vcard-rdf/3.0#<type>. Where the “<type>” will be substituted for one of the officially defined VCard parameter types, an example of this is shown in Figure 12.

[image: image12.jpg]<vCard:ADR rdf:parseType="Resource">

<rdfivalue> 12 New Street </rdf:value>

<rdf:type rdfiresource="http://www.w3.0rg/2001/vcard-rdf/3.0#work"/>
</vCard:ADR>

Figure 12: Example RDF VCard showing use of Properties with Attributes

Some VCard properties can define sub-structures. For example the ADR property has post office box, region and postcode as some of its sub-structures. Thus allowing for a more defined and detailed description of attributes. Table 2 shows the properties that have defined sub-structures with the names of the property types.
	VCard Property
	Structure Name
	Property Type Name

	ADR
	Post Office Box
	PoBox

	
	Extended Address
	Extadd

	
	Street Address
	Street

	
	Locality
	Locality

	
	Region
	Region

	
	Postal Code
	Pcode

	
	Country
	Country

	ORG
	Organization Name
	Orgname

	
	Organization Unit
	Orgunit

	N
	Family Name
	Family

	
	Given Name
	Given

	
	Additional Names
	Other

	
	Honorific Prefixes
	Prefix

	
	Honorific Suffixes
	Suffix

Table 2: RDF VCard Properties with sub-structures

4.5 Chapter Summary

We have seen that RDF VCards provide a mechanism for rich RDF descriptions of person details, in a clearly defined and well-organised manner. These descriptions may be used in an ontology to provide information about a property.

5 Jena

Jena is a java API written in Java for manipulating RDF models it was created by Hewlett Packard (HP) semantic web research group, based in Bristol. Jena was developed to satisfy two goals: -

· To provide an API that was easier for the programmer to use than alternative implementations

· To conformant to the RDF specifications

 Jena is open source and is available for download from [Jena].

5.1 Jena’s features

Jena has a number of features that make it an ideal tool for carrying out research into the SW as it allows for: -

· ARP parser compliant with latest working group recommendations

· Integrated query language (RDQL)

· Support for storing DAML ontologies in a model

· Persistent storage module based on Berkeley DB (BDB) or in relational databases

The ARP parser is a standards compliant parser for the full RDF/XML syntax for RDF. It has a modular design based on XML Info set and is capable of parsing large files. Jena’s query language is an implementation of an SQL-like query language for RDF derived from another query language called SquishQL (Squish Query Language) which itself is derived from rdfDB (RDF Database). It treats RDF as data and provides query with triple patterns and constraints over a single RDF model. The target usage is for scripting and for experimentation in information modeling languages. However Jena’s query language is considered to be “data oriented” as it only queries the information held in the models; that is there is no inference being done. Figure 13 shows an example Jena query that looks for a resource that has a property age who’s value is greater than 24.

[image: image13.jpg]SELECT ?resource

WHERE (?resource, <info:age>, ?age)

AND ?age >=24

USING info FOR <http://somewhere/peoplelnfo#>

Figure 13: Example Jena Query

Jena can also handle DAML+OIL by using its DAML model. This is a Jena model with some additional functionality to support the programmer in creating DAML ontologies. Each DAML ontology is encoded as RDF triples that can be stored within a Jena model. All of the operations of the DAML API get translated into adding, deleting and navigating the triples of this model. The BDB storage module allows Jena Models to be persistently stored using the Sleepy cat Berkeley dB storage manager. Offering a high performance implementation of the fine-grained RDF API. The relational database storage also allows for Jena models to be persistently stored but is slower than the BDB facility. However the relational database option does allow for use of such things as connectable to many different relational databases though configuration files support for My SQL.

5.2 Chapter Summary

Overall Jena provides the developer a wide range of tool to develop a semantic web application quickly and to utilize may of the key concepts of the semantic web such as RDF, DAML + OIL and for the storage and querying of such ontologies. However thou its querying facilities are powerful they do not provide for inference to be carried out upon the ontologies.
6 Requirements & Design

Requirements analysis can be defined as “the first technical step in the software process. It is at this point that a general statement of software scope is refined to a concrete specification that becomes the foundation for all software engineering activities that follow” [Pressman 2000]. Sommerville say’s that “requirements for a software system should set out what the system should do and define constraints on its operation and purpose” [Sommerville 2001]. Requirements can be broken down into “functional” and “non-functional requirements”. The following sections will discuss the functional and non-functional requirements of the system as well as the hard ware and software that will be needed to implement the system.

6.1 Functional Requirements

Functional requirements describe what facilities the system must provide. Each description of these requirements should be written in natural language and should avoid technical jargon. The functional requirements of the system include:

· Being able to select an ontology to query

· The ontology should store the following information about each entry

· Name

· Resource

· Location

· Age

· Role

· Be able to write the ontology out as either an XML or RDF file
· The system will provide searching upon the ontology and return the results to the user in a clear and meaningful manner.

6.2 Non-Functional Requirements

[Sommerville 2001] says, “Non-functional requirements are product requirements which constrain the system being developed”. Some of the key non-functional requirements placed upon the system include:

· The system must provide a quick access to the ontology.

· The system must be highly available as the goal is to provide information to customer's at all times of the day from any location.

· The system shall make efficient use of computing resources allocated for the project. These include disk size and processor speed
· The system must be portable as it is to demonstrate a web application there for the language used to create it must be able to work on various platforms.
· The system must be flexible in that it must posses the ability to run queries on different ontologies depending on the users needs.
· The responses generated by the system must be consistent so that for example if a query is asked twice on the same ontology the response for the second query must be the same as the first e.g. the order of the results.
6.3 Hardware and Software Requirements

For the system to work the following hardware device will be needed.

· A server for ontologies to reside on

· A client computer for the Web page to be accessed form

For the software requirements the following will be needed.

· JDK 1.4

· Notepad to create the RDF VCards

· Jena version 1.6.1

6.4 Overview of Methodologies

There are several different methodologies available for developers to use, each with their pluses and minuses and each suited to a different project type. Below is a brief description of the main methodologies.

6.4.1 Waterfall

This model suggests a systematic, sequential approach to development throw five distinct stages of requirement analysis and definition, system and software design, implementation and unit testing, integration and system testing and finally review and testing. The waterfall model is good to use on well-understood project using familiar technology but is considered high risk on new projects whose specification is not fully understood.

6.4.2 Evolutionary Prototyping

This models objective is to begin with an initial prototype is developed then use this prototype to work with the user or customer and evolve a final system. Also if the initial prototype is just used to gain a better understanding of the customers needs and after this is thrown away it is called throw away prototyping. This model is useful if the requirements are poorly known as it allows for change at anytime.

6.4.3 Reuse

This model makes the assumption that a similar system has already been developed and that at least part of that system can be integrated into the current system.

6.4.4 The Spiral model

The spiral model is an evolutionary model that couples prototyping with the control of the waterfall model. It allow for use of all the advantage of other models and also allows for the model being used at each stage to be refined or changed for another model.

6.4.5 Chosen Methodology

To develop the system I have decided to use prototyping methodology as the technology is new and not that well understood. Using this methodology it will be possible to make change to the system throw out the project while still sticking to the more formal approach of the waterfall model. It also makes sense in that the project is well defined and there are few risks. The requirements are well known and stable. The use of the spiral model will also stress the importance of testing during all stages of development. This is one of the few ways available to ensure a quality product is generated.

7 Design

[Bennett 2002] described design as being “how the system will be constructed without actually building it”. For the system to work there are two major components needed. The first component being an ontology and the second being an application to use that ontology and perform various tasks upon it. In this section the proposed design of these two components will be looked at first the design and creation of the ontology and secondly the design and creation of the application to run on it.

7.1 Design of the ontology

The ontology being developed will be written in RDF and in particular using RDF VCards. The reason for this is that RDF VCards provide an already well-defined framework for developing an ontology and given the time constraints upon this project any thing that reduces the complexity is welcome. When Developing an ontology there are several steps to follow in it construction these being: -

· Determine the domain and scope of the ontology

· Consider reusing existing ontologies

· Enumerate important terms in the ontology

· Define the class and class hierarchy

· Define the facets of the classes

· Create instances

7.1.1 Determine the domain and scope of the ontology

When determining the domain and scope of the ontology several question have to be asked such as: -

· What is the domain that the ontology will cover

· For what will the ontology be used

· What type of questions should the ontology provide answers for

For the purposes of this project the domain of the ontology will be that of holding information on sports people and in particular that of football players and managers. The ontology will be used to hold information on these sports people so that questions such as role, age and location of the sports person may be answered.

7.1.2 Consider reusing existing ontologies

As already mentioned in section 2.2.4 one of the main reason for developing an ontology is for the reuse of knowledge in a particular domain. Already there are large amounts of ontologies available on the web covering different subject matters such as the DAML ontology library [W 5]. However after careful searches on the web none could be found that adequately cover the subject matter being covered in this project. So it has been decided to build one from scratch.

7.1.3 Enumerate important terms in the ontology

Here a list is written down of all terms we would like either to make statements about or to explain to the user of the system. What are the terms we would like to talk about? What properties do those terms have? So for the footballer/sports person system being developed this would include such things as ratting, position etc.

7.1.4 Define the class and class hierarchy

To do this there are two approached the top down and bottom up approach. With the top down the development starts of with the most general concepts in the domain and add sub sets of each appropriate domain into that domain. This process is continued until the more specialized terms are reached. Bottom up on the other hand begins with the more specialized terms and works its way up to the more general domain scope. However as the language used to write the ontology in already has a structure suggested by it and as the range of the ontology needed for this project is limited, RDF VCards own structure shall be used as it covers all the domains needed. The specifications for RDF VCard may be viewed from

7.1.5 Define the facets of the classes

Here such things as the value type and range of values allowed by each class as stated, for example the value for a name or address class would be a string. However RDF VCards already have value types associated with each class as part of their specification [W 14] so again this part of the development may be skipped.

7.1.6 Create instances

The final step is that of creating instances for the classes. An example of the ontology created is shown is Figure 14 the complete ontology is included as an appendix at the end of the paper.

[image: image14.jpg]<?xml version="1.0" encoding="UTF-8" 7>

- <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

xmlns:vCard="http://www.w3.0rg/2001/vcard-rdf/3.0#"
xmlns:info="http://somewhere/peopleInfo#">

- <rdf:Description rdf:about="http://www.arsenal.com/">
<vCard:FN>Arsene Wenger</vCard:FN>
<info:age>54</info:age>

- <vCard:N rdf:parseType="Resource">
<vCard:Family>Wenger</vCard:Family>
<vCard:Given>Arsene</vCard:Given>
</vCard:N>
<vCard:BDAY>1949-22-10</vCard:BDAY>
<vCard:TITLE>Manager</vCard:TITLE>

- <vCard:ADR rdf:parseType="Resource">
<vCard:Locality>London</vCard:Locality>
</vCard:ADR>

- <vCard:ORG rdf:parseType="Resource">
<vCard:Orgname>Arsenal</vCard:Orgname>
</vCard:ORG>
</rdf:Description>
</rdf:RDF>

Figure 14: Example RDF VCard ontology

7.2 Design of the Query System

As already mentioned for the main body of the query system Jena version 1.6.1 will be used as it provides method for reading, writing and performing queries on RDF. The architecture of Jena is illustrated in Figure 15. It shows that the main part of the Jena system is the RDF API, which reads in the ontologies. Once they are read in they can be stored in one of three implementations of the API being the main memory, a relational database or Berkley database. For the purposes of this project they will be stored in memory for various processing to be carried out on it. One of the main things to be done is that of querying the system. These queries have to be coded into the system. So for the purpose of this project a selection of queries has to be made first. A full list of these is available in Appendix A. Because the default ontology is that of information about various people involved in football teams the queries will be build around extracting information on them. The Syntax of Jena query language includes: -

· Select

· Where

· And

· Using

The “select” clause defines what variables are required for the answer. The “where” clause used in the query is to define a sub graph pattern in terms of variables and constants. Each match of the pattern with a distinct sub graph of the queried graph generates a set of variable bindings that is included in the query results. The “and” clause introduces a filter on variable bindings; only bindings that pass the filter are included in the result set from the query. The “using” clause defines short prefixes for namespaces.

[image: image15.jpg]RDQL
Querys
XML
DAML + OIL /
= DAML + OIL
ROF |~ [\
I~—>| RDF API RDF
Readers E—
Main Memu Berkeley DB Relational

Database

Data Stores

Figure 15: Jena architecture
Jena also provides various methods to write out RDF/XML this is aided by the fact that the syntax of RDF/XML is flexible, allowing the same RDF graph to be written in many different ways. However this introduces the notion of style. Jena's basic RDF/XML writer takes no advantage of RDF/XML features that allow more compact and elegant expression, but it can write graphs of large sizes. Jena’s Pretty Writer, however can take full advantage of the available syntax to produce compact output, but on the down side it has limited scalability. So as the size of the RDF files used for this project will not be of a large size the choice has been made to opt for the Pretty Writer method as it also make the RDF files produced that bit easier to read for the user if they wish to read over the files after they have finished with them.

7.3 High Level Use Case of system

[image: image16.jpg]-

Build RDFVCard Ontology

— >

User Select Ontology

<<Extg¢nds>>

Preform Query on Ontology

7.3.1 Use Case Name – Select Ontology

Actor(s): User

Goal: To select an ontology to perform various actions upon it

Summary: The user needs to have an ontology to perform actions upon in the main program

Pre – Conditions: A default ontology must exist and the ontology must conform to RDF VCard specifications

Post – Conditions: Ontology is loaded into memory

Business Rules

· Only one ontology may be loaded in at a single time

· Different ontologies may be selected

· The user is the person responsible for selecting which ontology to use

Business Objects: User and Ontology

Business Event List

Business Event Actor(s) Business Function

User selects ontology User Ontology loaded into memory

7.3.2 Use Case Name – Perform Queries on Ontology

Actor(s): User

Goal: To extract information from the ontology

Summary: The user needs to access information contained within the ontology and have the means to get to that information.

Pre – Conditions: A ontology must be loaded into memory and the ontology must conform to RDF VCard specifications

Post – Conditions: Information is extracted from the ontology

Business Rules

· The queries can only be preformed upon the ontology stored in memory

· There must be a variation of queries to be preformed

· The user is the person responsible for choosing which queries to perform

Business Objects: User and Ontology

Business Event List

Business Event Actor(s) Business Function

User performs query on ontology User Retrieves information

7.3.3 Use Case Name – Build RDF VCard Ontology

Actor(s): User

Goal: To build a new RDF VCard ontology

Summary : The user may wish to construct their own VCards for various people including themselves, but may not know how to go about doing so, this feature will lets them create one easily without any prior knowledge on VCards or RDF.

Pre – Conditions: The ontology will be limited to certain instances. The user must know the required information about the person the VCard is being created on.

Post – Conditions: The ontology must conform to RDF VCard specifications

Business Rules

· The ontology must provide enough information about the person it is created about

· The ontology must conform to RDF VCard specifications

Business Objects: User

Business Event List

Business Event Actor(s) Business Function

User fills in instance for a User File Created

VCard

7.4 State Chart – Build RDF VCard Ontology

[image: image17.jpg]Enter Details(Resource, Age, Name)

Create own VCard Ontology Empty Onlology

Details Entefed [Details != Null

Ontology Complete Print Ontology() >©

Figure 16 State chart For Build RDF VCard Ontology

7.5 Sequence Diagram – Build RDF VCard Ontology

[image: image18.jpg]RDF Ontology

Create Ontology()

Add Details()

Out Put Details)

el
E4

Figure 17 Sequence Diagram For Build RDF VCard Ontology

8 Implementation

The implementation phase involves translating the logical design of the system as laid down in the design phase into an actual working code application that should fulfill the requirements of the system both functional and non-functional. The development of the application was done using the Kawa integrated development environment (IDE) that provided a sufficient development platform for the underlying Java developer kit version 1.4 (JDK) the Jena semantic web toolkit, was also used to provide much of the core functionality of the system. The Jena toolkit will first have to be installed before any programming is carried out. Full instruction on how to do this is given in Appendix B.

8.1 Reading the RDF File

To input the RDF file the user is first given the choice of selecting the default file or if they so wish their own file. The code for inputting the file is as follows: -

	String inputfile;

Model model = new ModelMem() ;

model.read(new FileReader(inputfile), "http://nowhere/","RDF/XML") ;

This is the standard method for reading in the file. The line “Model model = new ModelMem();” firstly creates an empty graph or model as it is called in Jena and stores it in memory. The variable “inputfile” is set to the name and path of the file that is to be input. So for example if the RDF file was located on the A drive the user would have to type in “A:/filename” to load the file. If however the file were in the same directory as the actual program the user would only have to type in the name of the RDF file. The user is also required to type in the extension of the file if they are selecting their own input file (e.g. “A:/filename.rdf”). Next the file in RDF/XML form is read into the newly created model with the file reader.

8.2 Creating Your Own RDF File

For the user to create their own RDF file the following code is firstly used to get the various details that will be used to populate the graph: -

	System.out.println("Enter your web address") ;

String personURI = com326.readLine();

System.out.println("Enter your first name") ;

String givenName = com326.readLine();

System.out.println("Enter your Surname") ;

String familyName = com326.readLine();

String fullName = givenName + " " + familyName;

System.out.println("Enter your Birthday") ;

String bday = com326.readLine();

After which Model “model0 = new ModelMem();” is again used to create a new empty graph. Next the following code is used to create the resource and add properties to it: -

	
Resource userName = model0.createResource(personURI)

.addProperty(VCARD.FN,fullName).addProperty(VCARD.BDAY,bday).addProperty(VCARD.N, model0.createResource().addProperty(VCARD.Given,givenName).addProperty(VCARD.Family, familyName));

A resource is created and set to in this case the users web page but as a URI can point to anything, this resource can also be anything from a html page to MPEG clip. After which the properties of that resource are added (such things as name and age) with the use of the “.addProperty()” method. Into the add property method are passed two parameters. The first telling the system what type of property is being passed for the purpose of this thesis they shall all be of the VCard type and the second the actual value. Once the model has been created it is printed out with the following code: -

	
Model0.write(new PrintWriter(System.out), "RDF/XML-ABBREV");

This writer takes advantage of RDF/XML abbreviated syntax to write the model (graph) more compactly and therefore easier for the user to understand. If the use so wishes they could use a tool like [CARA] to view the model in the form of a graph.

8.3 Querying the RDF File

There are various queries available to the user to perform upon the RDF file, however the implementation in each of these varies slightly in order to gain the required result in the most effective way.

8.3.1 Display Everybody

To achieve this query the Jena RDQL was used. The first thing to do was to construct a query string that would retrieve the desired results in this case the name of everybody in the RDF file and the URL to their web page containing their information. The query string to achieve this is shown below: -

	
String queryString = "SELECT ?x, ?fname WHERE (?x, <http://www.w3.org/2001/vcard-rdf/3.0#FN>, ?fname)" ;

What is said here is that we want to select all URI and full name from the model that has a RDF VCard specification full name (FN) property. The variable for the information that is required are introduced with a preceding question mark “?”. The query once constructed is then passed to the query class by use of the following code: -

	Query query = new Query(queryString) ;

query.setSource(model1);

QueryExecution qe = new QueryEngine(query) ;

The first line sends the query to the query class the second line then tells the query class which model the query is to be preformed on and finally third line executes the query. Once the query has been executed the results have to be returned. The results are returned as an iterator with each call to “QueryResults.next” returning one set of variables that have been matched after which then can be simply printed out. The code to do this is shown below: -

	for (Iterator iter = results ; iter.hasNext() ;)

{ResultBinding res = (ResultBinding)iter.next() ;

Object x = res.get("x") ;

Object fname = res.get("fname") ;

System.out.println("Link = "+x+" fname = "+fname) ;

}//for

8.3.2 Search for People by Location

For this option the following query was created:

String loc = com326.readLine();

String queryString ="SELECT ?resource WHERE (?resource, <http://www.w3.org/2001/vcard-rdf/3.0#ADR>, ?z)"+

	", (?z, <http://www.w3.org/2001/vcard-rdf/3.0#Locality>, '"+loc+"')";

This returns the URI from the model that has a value for location where the location property matches a variable “loc” that is enter by the user. The output is displayed by the same method as in section 9.3.1
8.3.3 Search for People by Age

For this option the following query was constructed: -

	System.out.println("Enter the lower age limit of the person you are looking for") ;

 int lAge = com326.readInt();

 String queryString = "SELECT ?x WHERE (?x, <info:age>, ?age)"+

 "AND ?age >=" +lAge+ "USING info FOR <http://somewhere/peopleInfo#>";

This returns the URI from the model that has a value for age (age is not a RDF VCard specification but as mentioned in section 4.4 extra properties can be added at will) where the age property matches or is greater than a variable “lAge” that is enter by the user. The output is displayed by the same method as in section 9.3.1

8.3.4 Search for People by Position

For this option the following query was constructed: -

	System.out.println("Enter Position") ;

String pos = com326.readLine();

String queryString = "SELECT ?x WHERE (?x, <http://www.w3.org/2001/vcard-rdf/3.0#TITLE>,"+"'"+pos+"')";

This returns the URI from the model that has a value for pos where the “TITLE” property matches a variable “pos” that is entered by the user. The output is displayed by the same method as in section 9.3.1

8.3.5 Search for People by Team

For this option the following query was created:

String loc = com326.readLine();

String queryString ="SELECT ?resource WHERE (?resource, <http://www.w3.org/2001/vcard-rdf/3.0#ORG>, ?z)"+

	", (?z, <http://www.w3.org/2001/vcard-rdf/3.0#Orgname>, '"+loc+"')";

This returns the URI from the model that has a value for “Orgname” where the Orgname property matches a variable “loc” that is enter by the user. The output is displayed by the same method as in section 9.3.1
8.3.6 Search for People by Full Name

For this option the following query was constructed: -

	System.out.println("Enter Name") ;

String name = com326.readLine();

String queryString = "SELECT ?x WHERE (?x, <http://www.w3.org/2001/vcard-rdf/3.0#FN>,"+"'"+name+"')";

This returns the URI from the model that has a RDF VCard specification full name (FN) property where the full name property matches a variable “name” that is enter by the user. The output is displayed by the same method as in section 9.3.1
8.3.7 Search for People by Forename or Surname

The implementation for this is different from the other queries that we have seen so far in the system, in that it does not utilize the Jena RDQL instead it uses the core Jena API which less powerful than the Jena RDQL provides enough functionality for these two queries. The code it uses to gain it results is as follows: -

	StmtIterator iter = model.listStatements(

 new

 SelectorImpl(null, VCARD.FN, (RDFNode) null) {

 public boolean selects(Statement s) {

 try {

 return s.getString()

 .endsWith(test1);

 } catch (RDFException e) {

 throw new RDFError(e);

 }

 }

 });

The key line of code is “SelectorImpl(null, VCARD.FN, (RDFNode) null) “ selects all statements in the model with VCard.FN as its predicate. Next the “public Boolean selects (Statement s)” and “. EndsWith (test1);” methods checks to see that all the names selected in the previous statement match the name that the user has specified in their search criteria. To check for the fore names the line “. EndsWith (test1);” is simply replaced with “.startsWith(test1);”

9 Testing and Evaluation

As a prototyping methodology is being employed, the testing and evaluation of the system is a continuous process throughout. Testing is critical throughout the development of any system in order to be sure that the system is doing what it should, i.e. meeting user requirements in an error free way. Sommerville says that “The testing of a program has two objectives. Firstly, it is intended to show that the system meets its specification; secondly, it is intended to exercise the system in such a way that latent defects are exposed (Sommerville, 1995, 426)”

9.1 Verification and Validation

This is the process of checking and analyzing the software product to check that it conforms to the specification and meets the needs of the user. Thou they sound like the same thing they are aimed at determining different aspects of the software as shown below.

· Verification - involves checking to see that the product is being built correctly. That is, that the system is conforms to the initial design specifications and requirements originally outlined in the analysis and design phase.
· Validation – involves making sure that the right product is being built. So that it meets the expectations of the customer/user.

Once the system conforms to both these criteria the system be evaluated effectively as for example it is no point testing for a user input if it is not called for in the requirements of the system. [Sommerville p.421] suggests two forms of testing to meet the twin objectives of validation and verification these are:

· Statistical Testing – To test the programs reliability and to check how it works under operational circumstances (i.e. how the user of the system will use it).

· Defect Testing – To find inconsistencies between a program and it specification (i.e. program fault or defects).

9.2 Statistical Testing

It was important that the interface should be tested in a way that reflected its intended usage. The functions of the system are:

· Select a RDF file

· Build an RDF VCard ontology

· Display for ever-body

· Search for People by Location

· Search for people by Age

· Search for people by Position

· Search for People by Team

· Search for people by Full name

· Search for people by Surname

· Search for people by Forename

Therefore it was critical that all these functions be tested throughout the development process, until a flawless system could be put into practice in a workplace environment.

9.2.1 Loading file

For loading the file there are two main options that the user can avail of. The first is to load the default file and the second is to load the users own RDF VCard file. Within these two options there are two shared possible outcomes the first and desired option is that the file is located and loaded into memory successfully and the second is that this does not succeed.

For the user to load from the default file successfully the process will be like this:

	Open list from default file!!!!!:

 Yes (1)

 No (2): 1

After which the user will be presented with the main menu:

* RDF Query System * ***

* 1. Build Your Own Ontology *

* 2. Display Ever body *

* 3. Search For people by Location *

* 4. Search For people by Age *

* 5. Search For people by Position *

* 6. Search For people by Team *

* 7. Search for people by Full Name *

* 8. Search for people by Surname *

* 9. Search for people by Forename *

* 10. Exit * ***

Or if the Default file is not found then the user will be presented with:

	Error: File not found

Process Exit...

The process the user must undertake for a successful reading of their own RDF VCard File is as follows:

	Open list from default file!!!!!:

Yes (1)

No (2): 2

Please enter the filename of the file you would like to read,

e.g. Sports: Also include the extension of the file e.g. ".rdf"

a:gary.rdf

Again if the process is successful they shall be presented with the main menu:

* RDF Query System * ***

* 1. Build Your Own Ontology *

* 2. Display Ever body *

* 3. Search For people by Location *

* 4. Search For people by Age *

* 5. Search For people by Position *

* 6. Search For people by Team *

* 7. Search for people by Full Name *

* 8. Search for people by Surname *

* 9. Search for people by Forename *

* 10. Exit * ***

Or if the users own file is not found, then they will be presented with:

	Error: File not found

Process Exit...

9.2.2 Build Your Own Ontology

To successfully create there own ontology the user must firstly select option “1” from the menu then enter in the relevant details as instructed, after which they shall be presented with the completed RDF VCard:

	Enter your web address i.e. http://www.infm.ulst.ac.uk/~name

http://www.infm.ulst.ac.uk/~Gary

Enter your first name

Gary

Enter your Surname

Gumbleton

Enter your Year of Birth

ie. YYYY Accepted value >=1900 and <2004

1976

Enter your Month of Birth

ie. M Accepted value >=1 and <12

9

Enter your Day of Birth

ie. D Accepted value >=1 and <31

6

Your VCard is as follows:

<rdf:RDFxmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' xmlns:vcard='http://www.w3.org/2001/vcard-rdf/3.0#' >

<rdf:Description rdf:about='Gary'>

<vcard:FN>Gary Gumbleton</vcard:FN>

<vcard:BDAY>1976-9-6</vcard:BDAY>

<vcard:N rdf:nodeID='A0'/>

</rdf:Description>

<rdf:Description rdf:nodeID='A0'>

<vcard:Given>Gary</vcard:Given>

<vcard:Family>Gumbleton</vcard:Family>

</rdf:Description>

</rdf:RDF>

9.2.3 Display All
To display ever-body the user simply selects the relevant option from the menu. After which they shall be presented with the full name of ever-body in that database and a link to there relevant web page:

	Link = http://www.arsenal.com/ full name = Arsene Wenger

Link = http://www.arsenal.com/ full name = David Seaman

Link = http://www.arsenal.com/ full name = Denis Bergkamp

Link = http://www.liverpoolfc.tv/team/squad/dudek/ full name = Jerzy Dudek

Link = http://www.liverpoolfc.tv/team/squad/owen/ full name = Michael Owen

Link = http://www.liverpoolfc.tv/team/squad/houllier/ full name = Gerard Houllier

Link = http://www.liverpoolfc.tv/team/squad/babbel/ full name = Markus Babbel

Link = http://www.whufc.com/player.asp?PLAYER=1590 full name = David James

Link = http://www.whufc.com/player.asp?PLAYER=2043 full name = Scott Minto

9.2.4 Search for People by Location

To search for people by location the user selects the relevant choice from menu and enters in the full location of the person they are looking for (remembering to that the system is case sensitive). If they are successful they shall be presented with a link to there site:

	Enter Location

Liverpool

Link = http://www.whufc.com/player.asp?PLAYER=2043

If however they are not successful they shall be presented with a message thus:

	Enter Location

False Name

No body with this location were found in the database

9.2.5 Search for People by Age

To search for people by age the user is asked to enter a lower age limit to base the search on. Once this is entered the system will return a link(s) to the relevant web page for all people who are that age or older:

	Enter the lower age limit of the person you are looking for

40

Link = http://www.whufc.com/player.asp?PLAYER=2043

If there the user enters a number for which there are no entries the following is shown:

	Enter the lower age limit of the person you are looking for

75

Nobody <= this age were found in the database

9.2.6 Search for People by Position

To search for people by position the user is asked to enter in the position of the person they are looking for (e.g. Manager) which will be used to base the search on. Once this is entered the system will return a link(s) to the relevant web page for all people who match that criteria:

	Enter Position

Manager

Link = http://www.arsenal.com/

Link = http://www.liverpoolfc.tv/team/squad/houllier/

If there the user enters a number for which there are no entries the following is returned:

	Enter Position

False Position

No body with this position were found in the database

9.2.7 Search for People by Team

To search for people by position the user is asked to enter in the name of the team they are looking for (e.g. Liverpool FC) which will be used to base the search on. Once this is entered the system will return a link(s) to the relevant web page for all teams that match the criteria:

	Enter Team

Liverpool FC

Link: http://www.liverpoolfc.tv/team/squad/dudek/

Link: http://www.liverpoolfc.tv/team/squad/owen/

Link: http://www.liverpoolfc.tv/team/squad/houllier/

Link: http://www.liverpoolfc.tv/team/squad/babbel/

If there the user enters a team for which there are no entries the following is displayed:

	Enter Team

False Team

No Teams with this name were found in the database

9.2.8 Search for People by Full Name

To search for people by full name the user selects the relevant choice from menu and enters in the full name of the person they are looking for (remembering to that the system is case sensitive). If they are successful they shall be presented with a link to there site:

	Enter Name

Scott Minto

Link = http://www.whufc.com/player.asp?PLAYER=2043

If however they are not successful they shall be presented with a message stating so:

	Enter Name

False Name

No body with this name were found in the database

9.2.9 Search for People by Surname

To search for people by surname the user selects the relevant choice from menu and enters in the name of the person they are looking for (remembering to that the system is case sensitive). If they are successful they shall be presented with the full-name of the people in the database that match that name:

	Enter Surname

Dudek

This database contains details of the following people with that name:

Jerzy Dudek

If however they are not successful they shall be presented with a message stating so:

	Enter Surname .

NoName

Nobody with this name were found in the database

9.2.10 Search for People by Forename

To search for people by forename the user selects the relevant choice from menu and enters in the name of the person they are looking for (remembering to that the system is case sensitive). If they are successful they shall be presented with the full-name of the people in the database that match that name:

	Enter Forename

David

This database contains details of the following people with that name:

David Seaman

David James

If however they are not successful they shall be presented with a message stating so:

	Enter Forename .

NoName

Nobody with this name were found in the database

9.3 Defect Testing

It is important at all stages of development to ensure that the program remains error free. . It is “the goal of defect testing to expose latent defects in a software system before the system is delivered” (Sommerville p442 6th edition). This means that the programmer should take steps to minimize and irritated faults in the code and to control the ability for the user to generate errors. Without such an undertaking the user will be presented with a system that is both frustrating and unusable thus they will have no choice to class the system as a failure and will not use it.

9.3.1 Title: - Loading file

Preconditions: - File does not conform to RDF specification (e.g. the RDF file does not have closing “</rdf:RDF>” brackets)

Steps: - User selects option 2 from the “open default file menu” They then type in the path to the file they wish to load as well as the name of that file and press return.

Expected: - The file should not load

Actual Results: - The program does not load the file but instead it crashes out.

9.3.2 Title: - Menu Selection

Preconditions: - To navigate around the system the use will have to make use of the menu system. Here the user will be give the choice of different options and will select the desired option by entering the number to the corresponding number to the left of the description of the function. Here the main prospect of error is that the user enters in a character instead of one of the displayed integers.

Steps: - The user loads a file into menu and is presented with the main menu. After which they enter a character instead of an integer to navigate around the system.

Expected: - An error message should be displayed and the main menu should be displayed again

Actual Results: - The program displayed an error message see below.

* RDF Query System * ***

* 1. Build Your Own Ontology *

* 2. Display Ever body *

* 3. Search For people by Location *

* 4. Search For people by Age *

* 5. Search For people by Position *

* 6. Search For people by Team *

* 7. Search for people by Full Name *

* 8. Search for people by Surname *

* 9. Search for people by Forename *

* 10. Exit * ***

Please enter Selection: A

!! Error Trying to Read an Int – Zero Returned !!

The same message is returned if the user also enters a number outside the range of displayed menu or tries to enter in a null return.

9.3.3 Title: - Query for Property That Does Not Exist

Preconditions: - If the user loads heir own file the possibility exists that its properties will be different from that of the default file. (i.e. their file may not posses for example the full name property). After the file is successfully loaded they may select the option to run the “search for people by full name”

Steps: - The user selects option 2 from the “open default file menu” They then type in the path to the file they wish to load (that does not for example contain a property for “full name”) as well as the name of that file and press return. After which they then proceed to a one of the option that allow for queries to be preformed upon the file loaded into memory and follow the instructions to perform that query.

Expected: - There should be no responses returned to the user and a message saying that no records were found displayed.

Actual Results: - The program did not find the name searched for and displayed a message saying so.

9.3.4 Title: - Create Own Ontology

Preconditions: - If the user has the opportunity to if they so wish to create their own RDF VCard standard ontology. When entering in the details for this option the user may accidentally return a null return, or in the case on entering in their date of birth details may return a value that is out of the boundaries allowed by the system.

Steps: - User selects option 1 from the “main menu” They then enter in null values for fields such as “fore name” and “Surname” and value out of range for fields such as year and month of birth.

Expected: - For null returned fields such as surname VCard will be created but with no values for these fields. As for values out of range on fields like day of birth a default value will be set and a message saying so displayed.

Actual Results: - The program displayed messages and set properties to null as required as shown below.

	Enter your web address i.e. http://www.infm.ulst.ac.uk/~name

Enter your first name

Enter your Surname

Enter your Year of Birth

ie. YYYY Accepted value >=1900 and <2004

1

Year out of value default set (1976)

Enter your Month of Birth

ie. M Accepted value >=1 and <12

1

Enter your Day of Birth

ie. D Accepted value >=1 and <31

t

!! Error trying to read an int - zero returned !!

Day out of value default set (06)

Your VCard is as follows:

<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' xmlns:vcard='http://www.w3.org/2001/vcard-rdf/3.0#' > <rdf:Description rdf:about=''>

<vcard:FN> </vcard:FN>

<vcard:BDAY>1976-1-6</vcard:BDAY>

<vcard:N rdf:nodeID='A0'/>

</rdf:Description>

<rdf:Description rdf:nodeID='A0'>

<vcard:Given> </vcard:Given>

<vcard:Family> </vcard:Family>

</rdf:Description>

</rdf:RDF>

10 Conclusion

The Semantic web is a vision of what the web of the future will be. Offering a web, which is not just designed for navigation by humans but also by machines, where information will not just be hidden away on text documents but will be structured in a manner that will make the discovery of documents and facts far easier. To support the Meta data describing the resources the authors of the semantic web proposed the use of ontologies, with the aim of providing the “semantics” for the semantic web. In this thesis I have examined the semantic web and some of the proposed technology that will be used to create it, as there is still a lot of discrepancy around those involved in the subject. In particular RDF was used as a means for providing the metadata and the Jena tool kit was used to perform queries upon the Meta data. This proved a successful partnership with Jena being able to extract the correct information from the RDF files.

With the amount of research being put into the semantic it is clear that it will become a reality not just in the future but in the near future. Thou for it to become as popular and gain as much wide scale appeal as the original web, there will need to be developed a easy to use software product that will allow people with no knowledge of such technologies as RDF to create their own web page with such Meta data imbedded within.

References

[Bennett 2002] Bennett, S, (2002) Object – Oriented System Analysis and Design using UML, 2nd edition, McGraw Hill, p.301

[Berners-Lee98a] Tim Berners-Lee, http://www.w3.org/DesignIssues/Semantic.html, September 1998

[Berners-Lee98b] Tim Berners-Lee, Uniform Resource Identifiers (URI): Generic Syntax, http://www.ietf.org/rfc/rfc2396.txt, August 1998

[Berners-Lee01] The Semantic Web, http://www.scientificamerican.com/2001/0501-issue/-0501- berners-lee.html
[CARA] http://zoe.mathematik.uni-osnabrueck.de/RDF/parser.html

[Jena] http://www.hpl.hp.com/semweb/
[Pressman 2000] Pressman, R, (2000) Software Engineering a practitioner’s approach, 5th edition, McGraw Hill, p.288

[RFC2396] IETF (Internet Engineering Task Force) RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax, Eds. T. Berners-Lee, R. Fielding, L. Masinter. August 1998.

[Sommerville 2001] Sommerville, I, (2001) Software Engineering, 6th edition, Addison Wesley, p.199

[W 1] http://www710.univ-lyon1.fr/~champin/rdf-tutorial/node4.html

[W 2] http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-71.html

[W 3] Eric van der Vlist, James Hendler, Using W3C XML Schema, October 2001

[W 4] Tim Berners-Lee, James Hendler, Ora Lassila, http://www.scientificamerican.com/2001/0501-issue/-0501- berners-lee.html

[W 5] DAML ontology library, http://www.daml.org/ontologies/

[W 6] http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

[W 7] www.TopicMaps.org Author: Murray Altheim

[W 8] www.y12.doe.gov/sgml/sc34/document/0129.pdf

[W 9] Lars Marius Garshol, What are Topic Maps, http://www.xml.com/lpt/a/2002/09/11/topicmaps.html

[W 10] http://www.w3.org/TR/REC-xml-names/

[W 11] World Wide Web Consortium (W3C) http://www.w3.org

[W 12] http://www.semanticweb.org

[W 13] Dublin Core www.dublincore.org

[W 14] http://www.w3.org/TR/vcard-rdf

[XML00] http://www.gca.org/attend/2000_conferences/XML_2000/default.htm

[XML02] Using W3C XML http://www.xml.com/pub/a/2000/11/29/schemas/part1.html, 2002

Appendix A
List of Queries

· Display ever body

· Search For people by Location

· Search For people by Age

· Search For people by Position

· Search For people by Team

· Search for people by Full Name

· Search for people by Surname

· Search for people by Forename

� http://www.hookablemedia.com

