
Editors: Mohamed Kaâniche, mohamed.kaaniche@laas.fr | Aad van Moorsel, aad.vanmoorsel@ncl.ac.uk

IT ALL DEPENDS

1540-7993/12/$31.00 © 2012 IEEE	 Copublished by the IEEE Computer and Reliability Societies	 March/April 2012� 67

It’s Time for Trustworthy Systems

Gernot Heiser, Toby Murray, and Gerwin Klein | NICTA

T he time for truly trustworthy
systems, backed by machine-

checked formal proof and analy-
sis, has arrived. Over the past few
decades, advances in formal veri-
fication and analysis technologies
mean that these tools can now
scale sufficiently to cover the entire
software trusted computing base
of appropriately designed real-
world systems.

We base this claim on our
experience with the formal veri-
fication and analysis of the seL4
microkernel.1 A microkernel is a
minimal OS kernel; seL4 weighs
in at under 10,000 lines of code.
The microkernel is also the most
critical trusted component in any
system built on it. It lets us build
well-performing systems with mil-
lions of lines of legacy code, while
reducing the trusted code base to
the same order of 10,000 lines of
code2 that we’ve already demon-
strated we can formally verify.

For this to work, the micro-
kernel must be able to effectively
isolate trusted from untrusted
code (see Figure 1), spatially and
temporally. The high-level proper-
ties needed for this are integrity,
confidentiality, and predictable
worst-case execution time (WCET).
Depending on the deployment
context, the focus might shift
between safety or security, and
additional properties will be of
interest (see Figure 2).

Providing properties such as
integrity and confidentiality has

been OS kernels’ primary function
for a long time. The exciting part
is that we now can fully formalize
and prove these properties of real
system implementations at the C
code level. Even more interesting is
that we can now use them to dras-
tically reduce the effort of proving
whole systems’ security goals. Of
course, that was the idea all along:
provide strong enforcement mech-
anisms that let us construct and
conceptually reason about the sys-
tem more easily. The shift is from
conceptual to formal.

Our progress on the deep for-
mal analysis of the seL4 micro-
kernel has been enabled by our
previous proof of functional cor-
rectness.1 This proof showed that
seL4’s C implementation con-
forms to an abstract functional
specification of its behavior. This
proof was the first of its kind, with
the relatively high cost of roughly
25 person-years. Although this
proof is important in its own right,
its true power is in reducing the
effort for further analysis. We can
now build on this result when rea-
soning about behaviors of seL4
because we can reduce reasoning
about the implementation to rea-
soning about the specification.
In our experience, this means an
order of magnitude less effort.

Proving Security
Our experience after the func-
tional-correctness proof demon-
strates that proving whole-system

security properties is now tractable
at a reasonable cost. We have since
completed a proof of integrity
enforcement for seL4 in less than
10 person-months,3 and we’re com-
pleting the dual proof of confiden-
tiality enforcement. These proofs
combine into the classic security
property of noninterference. We
carefully constructed our confi-
dentiality and noninterference for-
mulations to be preserved by the
formal refinement statement that
embodies functional correctness.

Therefore, we can continue to
exploit the functional-correctness
proof ’s benefits.

Each of these proofs maps the
seL4 protection state to a corre-
sponding abstract access control
policy. We then define the security
properties’ integrity and confiden-
tiality against this policy. Integrity
limits what the currently running
thread can modify; confidentiality
limits what it can read or infer.

Because seL4 implements a
dynamic capability-based access
control mechanism, its protection
state can evolve. So, we also proved
authority confinement, which means
that, for well-formed policies, the
protection state remains consistent
with the policy. In other words, the
policy places an upper bound on
the authority in the system.

Compared to integrity and
authority confinement, confiden-
tiality is harder to reason about.
Unlike modifying information,
reading information isn’t directly
observable in the system state.
To determine whether the kernel
might have read a private system
state on behalf of a subject, we
must consider all other counterfac-
tual executions in which this pri-
vate state differs. If the execution
results are the same in all cases, we
can conclude that this private state
doesn’t influence the execution and
so is never read. The difference from
earlier proofs is that we must con-
sider multiple executions instead of
analyzing one execution at a time.

Even though confidentiality is
harder to prove, completing the con-
fidentiality proofs for almost all of
the seL4 kernel took only under 14
person-months. Out of more than
1,250 lemmas, only 13 remained
unproved at the time of writing.

The next step is to pull kernel-
level properties up to system-level
properties. This is precisely what
noninterference is good for. We
can use it to separate trusted code
from legacy code. Also, for suitably

designed systems, we can reduce
our analysis from the millions of
lines of code for the entire system
to just the thousands of lines that
constitute its trusted components.
Noninterference tells us that we
can analyze the trusted compo-
nents independently of the rest of
the system because they’re isolated.

We expect to see full proofs of
noninterference for seL4-based
systems in the next one to two
years, based on the noninterfer-
ence theorem for seL4.

What about Safety?
At the OS level, security and safety
reduce mostly to the same key
properties. However, as Figure 2
indicates, many safety-critical sys-
tems have an extra requirement:
timeliness. Medical implants,
industrial robots, and vehicles
are hard real-time systems; they
must react to an external event
within a strictly bounded time. Yet
they also contain untrustworthy
legacy code. Think of a medical
implant that must communicate
with the external world via a wire-
less network for monitoring and
maintenance. The network driv-
ers and protocol stack likely com-
prise tens of thousands of lines of
code and can’t be trusted, requir-
ing the isolation provided by the
microkernel. This means that the
microkernel must hand control to
the life-support functions quickly
enough, no matter what the legacy
code was doing when some critical
sensor raised an interrupt.

Although the system can inter-
rupt the legacy code at any time,
that code might have invoked
an arbitrary microkernel call to
obtain a service. The implication
is that the uninterruptible execu-
tion time of all kernel calls must be
strictly bounded.

Such strict WCET bounds are
reasonably easy to establish for
classic real-time OSs, but such
systems don’t provide isolation

Figure 1. The separation provided by the seL4 microkernel.
This separation lets us build well-performing systems with
millions of lines of legacy code, while reducing the trusted
code base to a manageable level.

Linux server

Untrusted

Legacy apps

Trusted service

Trusted

Sensitive app

seL4 microkernel

Hardware

Figure 2. Properties of trustworthy systems. To effectively
isolate trusted from untrusted code, the microkernel
requires integrity, confidentiality, and predictable worst-
case execution time. Depending on the deployment
context, the focus might shift between safety or security,
and some of the other listed properties will be of interest.

Safety Security

 Functional

correctness

Memory
safety

Availability

Integrity

Timeliness Confidentiality/
Info flow

Termination

68	 IEEE Security & Privacy� March/April 2012

IT ALL DEPENDS

and therefore aren’t suitable for
this class of multicriticality sys-
tems. seL4 has treaded new ter-
ritory here as well, being the first
OS kernel providing strong isola-
tion that has undergone complete
WCET analysis. This analysis is
sound in that the results are guar-
anteed to be upper bounds on the
latencies that can be observed in
real execution. However, even on
a highly complex processor, such
as an ARM11 or Cortex-A8, the
degree of pessimism is moder-
ate. This is because the observed
latencies (which present a lower
bound on WCET) are within a
factor of five of the upper bounds.
Most of this pessimism is the
unavoidable result of underspeci-
fied hardware operation.4

How Can I Attack a
System with Proof?
There are limits to what formal
security and safety proofs can
achieve. Such fundamental limits
also apply to other methods such
as testing, but with the strength of
mathematical proof, it’s easy to get
carried away.

Maybe counterintuitively, the
possibility of mistakes in the proof
itself is a nonissue in practice.
The proof is machine-checked.
Although soundness defects can’t
be fundamentally ruled out, they
can be made arbitrarily unlikely.

The fundamental limits of
formal reasoning are instead
the assumptions the proof rests
on and the gap between the
formal property and our human
understanding of it. Attacking
these is much more fruitful. For
instance, a usual assumption is
hardware correctness. A viable
attack would be to make the
hardware fail in interesting ways—
for instance by overheating—
revealing information and thereby
violating confidentiality. Likewise,
running the system on hardware
that doesn’t match the proof ’s

assumptions might also cause the
system to fail. These assumptions
also embody the system’s assumed
context of use. The proof handily
identifies these assumptions and
gives us the defense method: ensure
the system is deployed under the
right operating conditions.

A more subtle attack is to
exploit hardware details beneath
the lowest abstraction layer in the
verification. If you can exploit the
mismatch between reality and
model, you might be able to find a
side channel. For instance, func-
tional models don’t talk about
hardware timing, so confidenti-
ality proofs don’t guarantee the
absence of covert timing channels.
The defense against these must be
with traditional analyses. In this
particular case, you could use the
kernel’s WCET profile.

You can also attack the under-
standing of the specification.
Although the specification is eas-
ier to understand than the code,
it’s still by no means simple. You
might find a behavior in the speci-
fication that is surprising to system

designers. The defense against
this is to ensure that your system’s
security goal is crisp and easy to
understand. Then prove this goal
on the basis of the specification,
shifting understanding from com-
plex to simple.

Although understanding these
limitations is necessary, formal
analysis provides an immense ben-
efit because validating and defend-
ing assumptions is much easier
than analyzing code. If you deploy
formal analysis correctly, whole
classes of problems disappear. If
you’re looking for buffer-overflow
attacks in seL4, you’re wasting
your time. If you’re trying to esca-
late privilege or corrupt another
application without authorization,
you won’t succeed. The proof has
checked all possible behaviors.

Security proofs don’t need to
end at the internal-policy level—
for example, which component or
actor can talk to whom. Instead, the
proof can and should go up to the
system’s actual high-level security
goal—for example, that no infor-
mation can be exchanged between

NEW TITLE FROM WILEY &

Anthony J. Dos Reis

Compiler Construction
Using JavaTM, JavaCC,
and Yacc

15% Off
for CS Members Compiler Construction Using

Java, JavaCC, and Yacc
by Anthony J. Dos Reis

A student-friendly, course-
friendly guide to compiler theory,
applications, and programming
technology, this book covers
every topic essential to learning

compilers from the ground up.
Accompanied by a powerful
and fl exible software package
for evaluating projects as well as
tutorials, projects, and test cases.

ISBN 978-0-470-94959-7 • December 2011 • 664 pages
Hardcover • $94.95 • A Wiley-IEEE Computer Society Press Publication

North America
1-877-762-2971

Rest of the World
+ 44 (0) 1243 843291

Online Orders
wiley.com/ieeecs

TO
 O

R
D

ER

www.computer.org/security� 69

two high-level networks. Even with
this level of assurance, there’s no
magic bullet. You still need orthog-
onal methods to ensure that you’re
building the right system with the
right requirements, and not the
wrong system correctly.

W e expect full proofs of
security or safety for suit-

ably architected systems within
the next one to two years. We
know how to architect and ana-
lyze (some) secure systems with
minimal trusted code bases, we
know how to complete kernel-level
security proofs, and we know how
to build trustworthy user com-
ponents. The next challenges are
to compose these parts into one
final proof of a system-wide secu-
rity goal and to decrease the cost of
verification through code synthe-
sis and stronger automation.

Although the initial investment
into the functional-correctness
proof of seL4 was high, this proof
keeps paying off as we prove fur-
ther properties on top of it. In our
experience, these proofs get easier
each year.

The seL4 kernel is just the
first system with such a com-
prehensive suite of strong high-
level properties. The excuse that
machine-checked proofs of safety
and security are infeasible doesn’t
apply anymore. The age in which
truly security- and safety-critical
systems should be fielded without
proof is ending.

Acknowledgments
NICTA is funded by the Australian
Government as represented by the
Department of Broadband, Commu-
nications and the Digital Economy
and the Australian Research Coun-
cil through the ICT Centre of Excel-
lence program.

References
1.	 G. Klein et al., “seL4: Formal

Verification of an Operating Sys-
tem Kernel,” Comm. ACM, vol. 53,
no. 6, 2010, pp. 107–115.

2.	 J. Andronick, D. Greenaway, and
K. Elphinstone, “Towards Proving
Security in the Presence of Large
Untrusted Components,” Proc.
5th Int’l Workshop Systems Soft-
ware Verification, Usenix Assoc.,
2010; http://static.usenix.org/
events/ssv10/tech/full_ papers/
Andronick.pdf.

3.	 T. Sewell et al., “seL4 Enforces
Integrity,” Proc. 2nd Int’l Conf.
Interactive Theorem Proving, LNCS
6898, Springer, 2011, pp. 325–340.

4.	 B. Blackham, Y. Shi, and G. Heiser,
“Improving Interrupt Response
Time in a Verifiable Protected
Microkernel,” Proc. 7th EuroSys
Conf., 2012; www.ssrg.nicta.com.
au/publications/papers/Blackham
_SH_12.pdf.

Gernot Heiser leads the Trust
worthy Systems project at
NICTA and is Scientia Professor
and John Lions Chair of Oper-
ating Systems at the School of
Computer Science and Engi-
neering at the University of New
South Wales. Contact him at
gernot@nicta.com.au.

Toby Murray is a researcher in the
Software Systems Research
Group at NICTA and a conjoint
lecturer in the School of Com-
puter Science and Engineering
at the University of New South
Wales. Contact him at toby.
murray@nicta.com.au.

Gerwin Klein is a research leader at
NICTA and a conjoint associate
professor in the School of Com-
puter Science and Engineering
at the University of New South
Wales. Contact him at gerwin.
klein@nicta.com.au.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

Executive Committee Members: Dennis Hoffman,

President; Lon Chase, VP Technical Operations; Bob

Loomis, VP Publications; Alfred Stevens, VP Meetings

and Conferences; Sam Keene, Secretary; Christian

Hansen, Treasurer; Marsha Abramo, VP Membership;

Jeffrey Voas, Jr. Past President

Administrative Committee Members: Scott Abrams,

Marsha Abramo, Loretta Arellano, Faye Bigler, Lon

Chase, Joe Childs, Lou Gullo, Christian Hansen,

Dennis Hoffman, Sam Keene, Way Kuo, Phil LaPlante,

Pradeep Lall, Bob Loomis, J. Bret Michael, Shiuhpyng

Shieh, Alfred Stevens, Scott Tamashiro, Jeff Voas, Todd

Weatherford, W. Eric Wong, Jia Zhang

www.ieee.org/reliabilitysociety

The IEEE Reliability Society (RS) is a technical
Society within the IEEE, which is the world’s lead-
ing professional association for the advancement of
technology. The RS is engaged in the engineering
disciplines of hardware, software, and human factors.
Its focus on the broad aspects of reliability, allows
the RS to be seen as the IEEE Specialty Engineering
organization. The IEEE Reliability Society is concerned
with attaining and sustaining these design attributes
throughout the total life cycle. The Reliability Society
has the management, resources, and administrative
and technical structures to develop and to provide
technical information via publications, training, con-
ferences, and technical library (IEEE Xplore) data to its
members and the Specialty Engineering community.
The IEEE Reliability Society has 22 chapters and mem-
bers in 60 countries worldwide.

The Reliability Society is the IEEE professional
society for Reliability Engineering, along with other
Specialty Engineering disciplines. These disciplines are
design engineering fields that apply scientific knowl-
edge so that their specific attributes are designed into
the system / product / device / process to assure that
it will perform its intended function for the required
duration within a given environment, including the
ability to test and support it throughout its total life
cycle. This is accomplished concurrently with other
design disciplines by contributing to the planning and
selection of the system architecture, design imple-
mentation, materials, processes, and components; fol-
lowed by verifying the selections made by thorough
analysis and test and then sustainment.

Visit the IEEE Reliability Society Web site as it is
the gateway to the many resources that the RS makes
available to its members and others interested in the
broad aspects of Reliability and
Specialty Engineering.

70	 IEEE Security & Privacy� March/April 2012

IT ALL DEPENDS

