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It’s Time for Trustworthy Systems

Gernot Heiser, Toby Murray, and Gerwin Klein | NICTA

T he time for truly trustworthy 
systems, backed by machine-

checked formal proof and analy-
sis, has arrived. Over the past few 
decades, advances in formal veri-
fication and analysis technologies 
mean that these tools can now 
scale sufficiently to cover the entire 
software trusted computing base 
of appropriately designed real-
world systems.

We base this claim on our 
experience with the formal veri-
fication and analysis of the seL4 
microkernel.1 A microkernel is a 
minimal OS kernel; seL4 weighs 
in at under 10,000 lines of code. 
The microkernel is also the most 
critical trusted component in any 
system built on it. It lets us build 
well-performing systems with mil-
lions of lines of legacy code, while 
reducing the trusted code base to 
the same order of 10,000 lines of 
code2 that we’ve already demon-
strated we can formally verify.

For this to work, the micro-
kernel must be able to effectively 
isolate trusted from untrusted 
code (see Figure 1), spatially and 
temporally. The high-level proper-
ties needed for this are integrity, 
confidentiality, and predictable 
worst-case execution time (WCET). 
Depending on the deployment 
context, the focus might shift 
between safety or security, and 
additional properties will be of 
interest (see Figure 2).

Providing properties such as 
integrity and confidentiality has 

been OS kernels’ primary function 
for a long time. The exciting part 
is that we now can fully formalize 
and prove these properties of real 
system implementations at the C 
code level. Even more interesting is 
that we can now use them to dras-
tically reduce the effort of proving 
whole systems’ security goals. Of 
course, that was the idea all along: 
provide strong enforcement mech-
anisms that let us construct and 
conceptually reason about the sys-
tem more easily. The shift is from 
conceptual to formal.

Our progress on the deep for-
mal analysis of the seL4 micro-
kernel has been enabled by our 
previous proof of functional cor-
rectness.1 This proof showed that 
seL4’s C implementation con-
forms to an abstract functional 
specification of its behavior. This 
proof was the first of its kind, with 
the relatively high cost of roughly 
25 person-years. Although this 
proof is important in its own right, 
its true power is in reducing the 
effort for further analysis. We can 
now build on this result when rea-
soning about behaviors of seL4 
because we can reduce reasoning 
about the implementation to rea-
soning about the specification. 
In our experience, this means an 
order of magnitude less effort.

Proving Security
Our experience after the func-
tional-correctness proof demon-
strates that proving whole-system 



security properties is now tractable 
at a reasonable cost. We have since 
completed a proof of integrity 
enforcement for seL4 in less than 
10 person-months,3 and we’re com-
pleting the dual proof of confiden-
tiality enforcement. These proofs 
combine into the classic security 
property of noninterference. We 
carefully constructed our confi-
dentiality and noninterference for-
mulations to be preserved by the 
formal refinement statement that 
embodies functional correctness. 

Therefore, we can continue to 
exploit the functional-correctness 
proof ’s benefits.

Each of these proofs maps the 
seL4 protection state to a corre-
sponding abstract access control 
policy. We then define the security 
properties’ integrity and confiden-
tiality against this policy. Integrity 
limits what the currently running 
thread can modify; confidentiality 
limits what it can read or infer.

Because seL4 implements a 
dynamic capability-based access 
control mechanism, its protection 
state can evolve. So, we also proved 
authority confinement, which means 
that, for well-formed policies, the 
protection state remains consistent 
with the policy. In other words, the 
policy places an upper bound on 
the authority in the system.

Compared to integrity and 
authority confinement, confiden-
tiality is harder to reason about. 
Unlike modifying information, 
reading information isn’t directly 
observable in the system state. 
To determine whether the kernel 
might have read a private system 
state on behalf of a subject, we 
must consider all other counterfac-
tual executions in which this pri-
vate state differs. If the execution 
results are the same in all cases, we 
can conclude that this private state 
doesn’t influence the execution and 
so is never read. The difference from 
earlier proofs is that we must con-
sider multiple executions instead of 
analyzing one execution at a time.

Even though confidentiality is 
harder to prove, completing the con-
fidentiality proofs for almost all of 
the seL4 kernel took only under 14 
person-months. Out of more than 
1,250 lemmas, only 13 remained 
unproved at the time of writing.

The next step is to pull kernel-
level properties up to system-level 
properties. This is precisely what 
noninterference is good for. We 
can use it to separate trusted code 
from legacy code. Also, for suitably 

designed systems, we can reduce 
our analysis from the millions of 
lines of code for the entire system 
to just the thousands of lines that 
constitute its trusted components. 
Noninterference tells us that we 
can analyze the trusted compo-
nents independently of the rest of 
the system because they’re isolated.

We expect to see full proofs of 
noninterference for seL4-based 
systems in the next one to two 
years, based on the noninterfer-
ence theorem for seL4.

What about Safety?
At the OS level, security and safety 
reduce mostly to the same key 
properties. However, as Figure 2 
indicates, many safety-critical sys-
tems have an extra requirement: 
timeliness. Medical implants, 
industrial robots, and vehicles 
are hard real-time systems; they 
must react to an external event 
within a strictly bounded time. Yet 
they also contain untrustworthy 
legacy code. Think of a medical 
implant that must communicate 
with the external world via a wire-
less network for monitoring and 
maintenance. The network driv-
ers and protocol stack likely com-
prise tens of thousands of lines of 
code and can’t be trusted, requir-
ing the isolation provided by the 
microkernel. This means that the 
microkernel must hand control to 
the life-support functions quickly 
enough, no matter what the legacy 
code was doing when some critical 
sensor raised an interrupt.

Although the system can inter-
rupt the legacy code at any time, 
that code might have invoked 
an arbitrary microkernel call to 
obtain a service. The implication 
is that the uninterruptible execu-
tion time of all kernel calls must be 
strictly bounded.

Such strict WCET bounds are 
reasonably easy to establish for 
classic real-time OSs, but such 
systems don’t provide isolation 

Figure 1. The separation provided by the seL4 microkernel. 
This separation lets us build well-performing systems with 
millions of lines of legacy code, while reducing the trusted 
code base to a manageable level.
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Figure 2. Properties of trustworthy systems. To effectively 
isolate trusted from untrusted code, the microkernel 
requires integrity, confidentiality, and predictable worst-
case execution time. Depending on the deployment 
context, the focus might shift between safety or security, 
and some of the other listed properties will be of interest.
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and therefore aren’t suitable for 
this class of multicriticality sys-
tems. seL4 has treaded new ter-
ritory here as well, being the first 
OS kernel providing strong isola-
tion that has undergone complete 
WCET analysis. This analysis is 
sound in that the results are guar-
anteed to be upper bounds on the 
latencies that can be observed in 
real execution. However, even on 
a highly complex processor, such 
as an ARM11 or Cortex-A8, the 
degree of pessimism is moder-
ate. This is because the observed 
latencies (which present a lower 
bound on WCET) are within a 
factor of five of the upper bounds. 
Most of this pessimism is the 
unavoidable result of underspeci-
fied hardware operation.4

How Can I Attack a 
System with Proof?
There are limits to what formal 
security and safety proofs can 
achieve. Such fundamental limits 
also apply to other methods such 
as testing, but with the strength of 
mathematical proof, it’s easy to get 
carried away.

Maybe counterintuitively, the 
possibility of mistakes in the proof 
itself is a nonissue in practice. 
The proof is machine-checked. 
Although soundness defects can’t 
be fundamentally ruled out, they 
can be made arbitrarily unlikely.

The fundamental limits of 
formal reasoning are instead 
the assumptions the proof rests 
on and the gap between the 
formal property and our human 
understanding of it. Attacking 
these is much more fruitful. For 
instance, a usual assumption is 
hardware correctness. A viable 
attack would be to make the 
hardware fail in interesting ways—
for instance by overheating—
revealing information and thereby 
violating confidentiality. Likewise, 
running the system on hardware 
that doesn’t match the proof ’s 

assumptions might also cause the 
system to fail. These assumptions 
also embody the system’s assumed 
context of use. The proof handily 
identifies these assumptions and 
gives us the defense method: ensure 
the system is deployed under the 
right operating conditions.

A more subtle attack is to 
exploit hardware details beneath 
the lowest abstraction layer in the 
verification. If you can exploit the 
mismatch between reality and 
model, you might be able to find a 
side channel. For instance, func-
tional models don’t talk about 
hardware timing, so confidenti-
ality proofs don’t guarantee the 
absence of covert timing channels. 
The defense against these must be 
with traditional analyses. In this 
particular case, you could use the 
kernel’s WCET profile.

You can also attack the under-
standing of the specification. 
Although the specification is eas-
ier to understand than the code, 
it’s still by no means simple. You 
might find a behavior in the speci-
fication that is surprising to system 

designers. The defense against 
this is to ensure that your system’s 
security goal is crisp and easy to 
understand. Then prove this goal 
on the basis of the specification, 
shifting understanding from com-
plex to simple.

Although understanding these 
limitations is necessary, formal 
analysis provides an immense ben-
efit because validating and defend-
ing assumptions is much easier 
than analyzing code. If you deploy 
formal analysis correctly, whole 
classes of problems disappear. If 
you’re looking for buffer-overflow 
attacks in seL4, you’re wasting 
your time. If you’re trying to esca-
late privilege or corrupt another 
application without authorization, 
you won’t succeed. The proof has 
checked all possible behaviors.

Security proofs don’t need to 
end at the internal-policy level—
for example, which component or 
actor can talk to whom. Instead, the 
proof can and should go up to the 
system’s actual high-level security 
goal—for example, that no infor-
mation can be exchanged between 
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two high-level networks. Even with 
this level of assurance, there’s no 
magic bullet. You still need orthog-
onal methods to ensure that you’re 
building the right system with the 
right requirements, and not the 
wrong system correctly.

W e expect full proofs of 
security or safety for suit-

ably architected systems within 
the next one to two years. We 
know how to architect and ana-
lyze (some) secure systems with 
minimal trusted code bases, we 
know how to complete kernel-level 
security proofs, and we know how 
to build trustworthy user com-
ponents. The next challenges are 
to compose these parts into one 
final proof of a system-wide secu-
rity goal and to decrease the cost of 
verification through code synthe-
sis and stronger automation.

Although the initial investment 
into the functional-correctness 
proof of seL4 was high, this proof 
keeps paying off as we prove fur-
ther properties on top of it. In our 
experience, these proofs get easier 
each year.

The seL4 kernel is just the 
first system with such a com-
prehensive suite of strong high-
level properties. The excuse that 
machine-checked proofs of safety 
and security are infeasible doesn’t 
apply anymore. The age in which 
truly security- and safety-critical 
systems should be fielded without 
proof is ending. 
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