
   
 

 
Abstract 

 
In this paper we investigate the problem of user 

authentication using keystroke biometrics. A new distance 
metric that is effective in dealing with the challenges 
intrinsic to keystroke dynamics data, i.e., scale variations, 
feature interactions and redundancies, and outliers is 
proposed. Our keystroke biometrics algorithms based on 
this new distance metric are evaluated on the CMU 
keystroke dynamics benchmark dataset and are shown to 
be superior to algorithms using traditional distance 
metrics. 

1. Introduction 
With the ever increasing demand for more secure access 

control in many of today’s security applications, 
traditional methods such as PINs, tokens, or passwords fail 
to keep up with the challenges presented because they can 
be lost or stolen, which compromises the system security. 
On the other hand, biometrics 
[9][13][14][15][21][25][31][33] based on “who” is the 
person or “how” the person behaves present a significant 
security advancement to meet these new challenges. 
Among them, keystroke dynamics [22][24][26] provides a 
natural choice for secure “password-free” computer 
access. Keystroke dynamics refers to the habitual patterns 
or rhythms an individual exhibits while typing on a 
keyboard input device.  These rhythms and patterns of 
tapping are idiosyncratic [5], in the same way as 
handwritings or signatures, due to their similar governing 
neurophysiological mechanisms. As early as in the 19th 
century, telegraph operators could recognize each other 
based on one’s specific tapping style [18].  This suggests 
that keystroke dynamics contain sufficient information to 
serve as a potential biometric identifier to ascertain a 
specific keyboard user. 

Compared to other biometrics, keystroke biometrics has 
additional desirable properties due to its user-friendliness 
and non-intrusiveness. Keystroke dynamics data can be 
collected without a user’s cooperation or even awareness. 

Continuous authentication is possible using keystroke 
dynamics just as a mere consequence of people’s use of 
computers. Unlike many other biometrics, the temporal 
information of keystrokes can be collected to ascertain a 
user using only software and no additional hardware. In 
summary, keystroke dynamics biometrics enables a cost 
effective, user friendly, and continuous user authentication 
with potential for high accuracy. 

Although keystroke dynamics is governed by a person’s 
neurophysiological pathway to be highly individualistic, it 
can also be influenced by his or her psychological state. 
As a “behavioral” biometrics [35], keystroke dynamics 
exhibits instabilities due to transient factors such as 
emotions, stress, and drowsiness etc [6]. It also depends on 
external factors, such as the input keyboard device used, 
possibly due to different layout of the keys. The keying 
times can be noisy with outliers. As keystroke biometrics 
exploits the habitual rhythm in typing, it has been 
observed that keystrokes of frequently typed words or 
strings show more consistency and are better discerners 
[22][38]. 

Keystroke biometrics can use “static text”, where 
keystroke dynamics of a specific pre-enrolled text, such as 
a password, is analyzed at a certain time, e.g., during the 
log on process. For more secure applications, “free text” 
should be used to continuously authenticate a user.  

The rest of the paper is organized as follows. In section 2 
we will review the current state of keystroke biometric 
techniques. We discuss the strength and limitations of two 
top performing distance metrics for keystroke dynamics 
and propose a new distance metric that combines the 
benefits of both these schemes in section 3. Section 4 
describes our keystroke dynamics classifiers. Section 5 
presents the experiments and performance study of the 
proposed algorithms. In section 6 we summarize our 
approach and outline future work. 

2. Literature Review 
Of late, keystroke dynamics has become an active 

research area due to the increasing importance of cyber 
security and computer or network access control. Most of 
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the existing approaches focus on static verification, where 
a user types specific pre-enrolled string, e.g., a password 
during a login process, and then their keystroke features 
are analyzed for authentication purposes [30]. Only a few 
research studies address the more challenging problem of 
keystroke biometrics using “free text”, where the users can 
type arbitrary text as input [22][28][37]. 

Keystroke dynamics features are usually extracted using 
the timing information of the key down/hold/up events. 
The hold time or dwell time of individual keys, and the 
latency between two keys, i.e., the time interval between 
the release of a key and the pressing of the next key are 
typically exploited.  Digraphs, which are the time latencies 
between two successive keystrokes, are commonly used. 
Trigraphs, which are the time latencies between every 
three consecutive keys, and similarly, n-graphs, have been 
investigated as well. In their study on keystroke analysis 
using free text, Sim and Janakiraman [27] investigated the 
effectiveness of digraphs and more generally n-graphs for 
free text keystroke biometrics, and concluded that n-
graphs are discriminative only when they are word-
specific. As such, the digraph and n-graph features do 
depend on the word context they are computed in. 

The use of keystroke dynamics for verification and 
identification purposes was first investigated back in the 
1970’s [7][29]. Gaines et al. [8] did a preliminary study on 
keystroke dynamics based authentication using the T-test 
on digraph features. Monrose and Rubin [22] later 
extracted keystroke features using the mean and variance 
of digraphs and trigraphs. Using the Euclidean distance 
metric with Bayesian-like classifiers, they reported a 
correct identification rate of 92% for their dataset 
containing 63 users.  

Bergadano et al. [2] and later Gunetti and Picardi [10] 
proposed to use the relative order of duration times for 
different n-graphs to extract keystroke features that was 
found to be more robust to the intra-class variations than 
absolute timing. They demonstrated that the new relative 
feature, when combined with features using absolute 
timing, improved the authentication performance using 
free text.  

Over the years, keystroke biometrics research has 
utilized many existing machine learning and classification 
techniques. Different distance metrics, such as the 
Euclidean distance [3][22], the Mahalanobis distance 
[3][4], and the Manhattan distance [1][16], have been 
explored. Both classical and advanced classifiers have 
been used, including K-Nearest Neighbor (KNN) 
classifiers [4], K-means methods [12], Bayesian classifiers 
[22], Fuzzy logic [11], neural networks [11][19], and 
support vector machines (SVMs) [36]. A large range of 
performance numbers has been published. However, it is 
not possible to make a sound comparison of various 
algorithms directly because of the use of different datasets 

and evaluation criteria across the studies. To address this 
issue, keystroke dynamics databases including benchmark 
results of popular keystroke biometrics algorithms have 
been published [17][19] to provide a standard 
experimental platform for progress assessment. Killourhy 
and Maxion collected and published a keystroke dynamics 
benchmark dataset containing 51 subjects with 400 
keystroke dynamics collected for each subject [17]. 
Furthermore, they evaluated fourteen available keystroke 
dynamics algorithms on this dataset, including Neural 
Networks [4], K-means [12], Fuzzy Logic [11], KNNs, 
Outlier Elimination [11], SVMs [36], etc. Various distance 
metrics, including Euclidean distance [3], Manhattan 
distance [1][16] and Mahalanobis distance [3][4] were 
used. This keystroke dataset along with the evaluation 
methodology and state of the art performance provides a 
benchmark to objectively gauge the progresses of new 
keystroke biometric algorithms. 

3. A New Distance Metric for Feature 
Matching 

The performance study of the fourteen existing 
keystroke dynamics algorithms implemented by Killourhy 
and Maxion [17] indicated that the top performers are the 
classifier using scaled Manhattan distance [1], with an 
equal error rate (EER) of 0.096, and the nearest neighbor 
classifier using the Mahalanobis distance [4] with an EER 
of 0.10 on their keystroke dynamics benchmark dataset. In 
the following section we discuss the advantages of both 
Manhattan distance and Mahalanobis distance to 
understand why they succeed in matching keystroke 
dynamics patterns. We also point out their limitations. A 
new distance metric is then proposed to combine the 
benefits of these two distance metrics while overcoming 
their limitations. 

3.1. Mahalanobis Distance 
Euclidean distance has been the default distance metric 

for its simplicity and geometrical intuitiveness. However, 
it has two major limitations: 

1. It is very sensitive to scale variations in the 
feature variables, and 

2. It has no means to deal with the correlation 
between feature variables. 

   Mahalanobis distance, on the other hand, takes into 
account the covariance of data variables to correct for the 
heterogeneity and non-isotropy observed in most real data. 
The squared Mahalanobis distance between two feature 
vectors x and y is defined as  

2 1( ) ( )Tx y x y S x y�� � � �       (1)    
where S is the covariance matrix of the data. It not only 
weights the distance calculation according to the statistical 
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variation of each feature component, but also decouples 
the interactions between features based on their covariance 
matrix to provide a useful distance metric for feature 
comparisons in pattern analysis. In statistical literature, the 
Mahalanobis distance is related to the log likelihood under 
the assumption that data follow multivariate Gaussian 
distribution which is a reasonable approximation for most 
practical data.   

3.2. Manhattan Distance 
The Manhattan distance metric, also called L1 distance 

or city block distance, is defined as follows: 

1 i i
i

x y x y� � ��          (2)      

The Manhattan distance has the advantages of simplicity 
in computation and easy decomposition into contributions 
made by each variable. Most importantly, it is more robust 
to the influence of outliers compared to higher order 
distance metrics including Euclidean distance and 
Mahalanobis distance. As shown in Figure 1, the error 
contribution of the individual component grows 
quadratically in its magnitude for L2 metrics including 
Euclidean distance and Mahalanobis distance, while it 
increases only linearly for L1 metrics such as Manhattan 
distance. As a result, Manhattan distance is more robust 
than Mahalanobis distance in the presence of outliers. The 
Manhattan distance also has a statistical interpretation as 
the Mahalanobis distance. It is in fact related to the log 
likelihood of the multivariate Laplace distribution with an 
identity covariance matrix. The Laplace distribution is 
similar to the Gaussian distribution in that both are 

symmetric with one mode. However, the Laplace 
distribution has fatter tails than the Gaussian distribution 
(see Figure 2), and therefore, it is more tolerant to outliers 
that significantly deviate from the mean. The Laplace 
distribution provides an attractive alternative to Gaussian 
assumption for many real world data with heavy tails. It 
has been observed that the Manhattan distance metric 
outperformed other distance metrics including Euclidean 
distance, the Vector Cosine Angle distance, and 
Histogram Intersection distance in a performance study of 
image retrieval on a large image database [32]. 

3.3. A New Distance Metric 
With the above discussion, it is easy to understand why 

keystroke biometrics using Mahalanobis distance and 
Manhattan distance outperformed other algorithms 
including some of the more advanced machine learning 
techniques. The keystroke dynamics features consist of 
both dwell and latency timings to have large variations in 
individual components. The feature variables tend to 
interact with each other as well. These evident scale 
variations and feature correlations are handled well using 
the Mahalanobis distance metric. However, Mahalanobis 
distance is susceptible to the outliers that are abundant in 
keystroke dynamics data due to the frequent pauses during 
typing. On the other hand, Manhattan distance is shown to 
be more robust to outliers but it is not able to correct for 
the adverse interactions and redundancies between 
keystroke features. So, each of the two metrics, when used 
alone, has its advantages and limitations.  

Figure 1: The error contribution of individual feature 
variables grows quadratically in its magnitude for L2 
metrics, including Euclidean distance and Mahalanobis 
distance, but it increases only linearly for L1 metrics 
such as Manhattan distance. 

Figure 2: The probability density functions for univariate
Laplace distribution and Gaussian distribution with
mean 0 and variance 1. The Laplace distribution has 
fatter tails than the Gaussian distribution to be more 
tolerant to outliers. 
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We propose a new distance metric combining both 
Mahalanobis distance and Manhattan distance such that 
one complements the other. First, we apply the principle 
of Mahalanobis distance to decorrelate and normalize the 
keystroke dynamics feature variables so that the 
covariance matrix of the transformed feature vectors 
becomes an identity matrix. This rectifying process is 
accomplished by applying the following linear transform 
to the input keystroke dynamics data: 

'x x� �
             (3)  

where 1/2S�� �  is the inverse of the principle square 
root of the covariance matrix S such that 1T S�� �� � . 
With this transform, the data features become uncorrelated 
with equal variations in the feature variables. Once the 
data are normalized and decoupled, we then compute the 
Manhattan distance between two data points 'x and 'y  in 
a more standardized new feature space for the original 
data points x and y:

      

 
1

1/2
1

' || ' ' ||

|| ( ) || .

x y x y

S x y�

� � �

� �        (4) 

This new distance metric ensures not only that the 
undesirable correlation and scale variations are accounted 
for, but also suppress the influence of outliers for 
improved performance. As a result, the proposed distance 
metric combines the benefits of both Mahalanobis and 
Manhattan distance metrics while overcoming their 

limitations when used individually. As it turns out, this 
new distance metric also has a nice statistical 
interpretation. It is associated with the log likelihood of 
the general multivariate symmetric Laplace distribution 
with S as its covariance matrix.  

4. Keystroke Dynamics Classifier 
We frame keystroke dynamics based authentication as a 

one- class classification problem which learns a model for 
a user, rejects anomalies to the learned model as 
imposters, and accept inliers as the genuine user. Although 
the use of negative examples in training could 
significantly improve the accuracy of the classifier, it is 
unrealistic to assume prior knowledge about the keystroke 
features from imposters, let alone the availability of their 
training data. 

We used the Nearest Neighbor classifier with the new 
distance metric defined in   to either ascertain a keystroke 
dynamics feature as originating from the genuine user 
when the distance to its nearest neighbor in the training 
data is below a threshold value, or reject it as an imposter, 
otherwise. The covariance matrix is computed using all 
the training keystroke feature vectors from the intended 
user. 

The adoption of the new distance metric helps suppress 
the adverse effects of outliers during the classification 
stage. However, outliers could still corrupt the training 
data and deteriorate the authentication performance. We 

Figure 3. Keystroke dynamics features for static key string “.tie5Roanl” from the CMU keystroke dynamics benchmark 
dataset [17]. The dwell time and digraphs for the first four data collection sessions for three subjects are shown.
Although the keystroke features provide sufficient distinguishing patterns for each subject, they are highly correlated, 
with large scale variations, and contain noise and outliers. Our proposed distance metric is effective in handling these 
challenges that are intrinsic to keystroke dynamics data. 
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employed an outlier removal process during the training 
phase. For the ith feature variable, we sort the 
measurements from the training data and compute the 
median i�  and standard deviation i�  using all training 
measurements excluding those in the upper and lower  p  
percentiles. Only the training feature vectors with their ith 
variable falling in the interval 	 
,i i i ik k� � � �� � are 
retained and those falling outside of the interval are 
discarded from the training data. Once the outliers are 
removed from the training data, we use the Nearest 
Neighbor classifier with the new distance metric to 
classify the test keystroke feature vectors. So, we 
essentially have two different new metric based nearest 
neighbor classification algorithms: one without outlier 
removal and one with outlier removal. 

5. Experiments 
We evaluated the proposed keystroke authentication 

algorithms using the CMU keystroke dynamics benchmark 
dataset [17] because it comes with the performance 
numbers for a range of existing keystroke dynamics 
algorithms for objective comparison.  

The CMU benchmark dataset contains keystroke 
dynamics consisting of the dwell time for each key and the 
latencies between two successive keys for static password 
string “.tie5Roanl”. There are 51 subjects in the dataset. 
For each subject, there are eight data collection sessions 
with at least one day interval between two sessions. A 
total of 50 feature vectors were extracted in each session, 
resulting in a total of 400 feature vectors for each subject. 
We show in Figure 3 four sessions of keystroke dynamics 
features collected for three subjects. The absolute value of 
the covariance matrix of the keystroke features for one 
subject is also visualized in Figure 4. 

Although the keystroke features provide sufficient 
distinguishing patterns for each subject, they are highly 
correlated, with large scale variations, and contain noise 
and outliers. Our proposed distance metric is effective in 
handling these challenges that are intrinsic to keystroke 
dynamics data. 

We used the exact same protocol and evaluation 
methodology as in [17] to ensure objective performance 
comparisons. For each subject, we used the first 200 
feature vectors as the training data. The remaining 200 
feature vectors were used as positive test data and the first 
50 feature vectors from the remaining 50 subjects are used 
to form 250 negative feature vectors as imposters in the 
authentication phase for this user. The authentication 
accuracy is evaluated using the equal error rate (ERR), 
where the miss rate and false alarm rate are equal, and the 
zero-miss false alarm rate (ZMFAR), which is the 
minimum false alarm rate when the miss rate is zero. The 
evaluation is performed for each subject; the mean and 
standard deviation of error rates for the 51 subjects are 
reported. 

Using the nearest neighbor classifier with the proposed 
new distance metric, we achieved an average EER of  
8.7%, and ZMFAR of 42.3% across all 51 subjects. The 
error rate is reduced to 8.4% for ERR and 40.5% for 

Algorithm Equal-error rate  Algorithm Zero-miss false-alarm rate 
Nearest Neighbor (new distance metric) 
+ outlier removal 

0.084 (0.056) Nearest Neighbor (new distance metric) 
+ outlier removal 

0.405 (0.268) 

Nearest Neighbor (new distance metric) 0.087 (0.060) Nearest Neighbor (new distance metric) 0.423 (0.269) 
Manhattan (scaled) [17] 0.096 (0.069) Nearest Neighbor (Mahalanobis) [17] 0.468 (0.272) 
Nearest Neighbor (Mahalanobis) [17] 0.100 (0.064) Mahalanobis [17] 0.482 (0.273) 

Figure 4. Keystroke dynamics features are correlated. 
Shown in the figure is the absolute value of the covariance
matrix of the training keystroke features for one subject, 
normalized so that the diagonal entries are 1. 

Table 1. The proposed keystroke biometric algorithms outperform existing detectors reported in [17]. Shown in bold in the table 
are the average equal error rate (with the standard deviation shown in brackets) and the zero-miss false-alarm rate of our two 
keystroke dynamics algorithms: Nearest neighbor classifier with the proposed new distance metric for keystroke dynamics 
features, and NN classifier using the new distance metric with additional outlier removal in training phase. We also show the 
performances of the top two performers for either of the error categories reported in [17]. The proposed new distance metric is 
shown to be advantageous in handling the challenges intrinsic to the keystroke dynamics data by reducing both errors. 
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ZMFAR by further removing outliers from the training 
dataset. We used p = 5 and k = 4 in the experiments for 
outlier removal. Our proposed algorithms outperform the 
best reported algorithms in both metrics, as shown in 
Table 1. 

6. Conclusions and Future Work 
We studied the characteristics of keystroke dynamics for 

computer user authentication and proposed a new distance 
metric which decouples correlated data, normalizes feature 
variations, and suppresses outliers. As outliers and data 
correlations are typical in keystroke dynamics data, it is 
not surprising that classifiers using the new distance 
metric outperform existing top performing keystroke 
dynamics classifiers which use traditional distance 
metrics.  

Although we applied the new distance metric to the 
problem of matching keystroke dynamics features, it is a 
general distance metric that can be applied to any distance 
computation in feature vector spaces where the traditional 
Mahalanobis distance is applicable, with the additional 
advantage of robustness to outliers. 

We have applied the proposed distance metric to 
improve the accuracy of keystroke dynamics using static 
text. In the future, we will investigate application of our 
new distance metric to the more challenging problem of 
keystroke biometrics using free text, develop richer key 
stroke features, and study context dependent sub-word and 
across-word models. 

7. References 
[1]  L. C. F. Ara´ujo, L. H. R. Sucupira, M. G. Liz´arraga, L. L. 

Ling, and J. B. T. Yabu-uti. “User authentication through 
typing biometrics features”, In Proc. 1st Int’l Conf. on 
Biometric Authentication (ICBA), volume 3071 of Lecture 
Notes in Computer Science, pp. 694–700, 2004. 

[2] F. Bergadano, D. Gunetti, and C. Picardi, “User 
Authentication through Keystroke Dynamics”, ACM Trans. 
Information and System Security, 5(4), pp. 367–397, 2002. 

[3] S. Bleha, C. Slivinsky, and B. Hussein, “Computer-Access 
Security Systems using Keystroke Dynamics”, IEEE Trans. 
Pattern Analysis and Machine Intelligence, vol. 12, no. 12, 
1990, pp. 1217–1222. 

[4] S. Cho, C. Han, D. H. Han, and H. Kim. “Web-based 
keystroke dynamics identity verification using neural 
network”, Journal of Organizational Computing and 
Electronic Commerce, 10(4):295–307, 2000. 

[5] A. Dvorak, N. Merrick, W. Dealey, and G. Ford. 
“Typewriting Behavior. American Book Company, New 
York, USA, 1936. 

[6] C. Epp, M. Lippold, and R. L. Mandryk, “Identifying 
Emotional States using Keystroke Dynamics”, Proc. 2011 
annual conf. on Human factors in computing systems, 2011. 

[7] G. Forsen, M. Nelson, and R. Staron, Jr. “Personal attributes 
authentication techniques”, Technical Report RADC-TR-
77-333, Rome Air Development Center, October 1977. 

[8] R. Gaines, W. Lisowski, S. Press, and N. Shapiro, 
“Authentication by keystroke timing: some preliminary 
results”, Rand Rep. R-2560-NSF, Rand Corporation, 1980. 

[9] R. Giot, B. Hemery and C. Rosenberger, “Low Cost and 
Usable Multimodal Biometric System Based on Keystroke 
Dynamics and 2D Face Recognition”,  Int’l Conf. on 
Pattern Recognition (ICPR), pp. 1128 -1131, 2010. 

[10] D. Gunetti and C. Picardi. “Keystroke analysis of free text”, 
ACM Transactions on Information and System Security, 
8(3):312–347, 2005. 

[11] S. Haider, A. Abbas, and A. K. Zaidi. “A multi-technique 
approach for user identification through keystroke 
dynamics”, IEEE Int’l Conf. on Systems, Man and 
Cybernetics, pp. 1336–1341, 2000. 

[12] P. Kang, S. Hwang, and S. Cho. “Continual retraining of 
keystroke dynamics based authenticator”, In Proc. 2nd Int’l 
Conf. on Biometrics (ICB’07), pp. 1203–1211, 2007. 

[13] A. K. Jain, R. Bolle, and S. Pankanti (editors), “Biometrics: 
Personal Identification in Networked Society”, Kluwer 
Academic Publishers, 1999.  

[14] A. K. Jain, S. Pankanti, S. Prabhakar, L. Hong, and A. Ross, 
“Biometrics: a grand challenge”, Proc. Int’l Conf. on 
Pattern Recognition, vol. 2, pp. 935–942, August 2004. 

[15] A. K. Jain, A. Ross, and S. Prabhakar, “An introduction to 
biometric recognition”, IEEE Trans. on Circuits and 
Systems for Video Technology, vol. 14, pp. 4–20, Jan 2004. 

[16] R. Joyce and G. Gupta. “Identity authentication based on 
keystroke latencies”, Communications of the ACM, 
33(2):168–176, 1990. 

[17] K. S. Killourhy and R. A. Maxion, “Comparing Anomaly 
Detectors for Keystroke Dynamics”, in Proc. 39th Annual 
Int’l Conf. on Dependable Systems and Networks (DSN-
2009), pp. 125-134, 2009. 

[18] J. Leggett and G. Williams, “Verifying Identity via 
Keystroke Characteristics”, Int’l J. Man-Machine Studies, 
vol. 28, no. 1, pp. 67–76, 1988.  

[19] Y. Li, B. Zhang, Y. Cao, S. Zhao, Y. Gao and J. Liu,  
“Study on the Beihang Keystroke Dynamics Database”, 
Int’l Joint Conf. on Biometrics (IJCB), pp. 1-5, 2011.  

[20] C. C. Loy, W. K. Lai and C. P. Lim, “Keystroke patterns 
classification using the ARTMAP-FD neural network”, 
Proc. of the 3rd Int. Conf. on Intelligent Information Hiding 
and Multimedia Signal Processing, pp. 61-64, 2007.  

[21] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, 
Handbook of Fingerprint Recognition, Springer, NY, 2003.  

[22] A. Messerman, T. Mustafic, S. Camtepe and S. Albayrak, 
“Continuous and non-intrusive identity verification in real-
time environments based on free-text keystroke dynamics”,  
 Int’l Joint Conf. on Biometrics (IJCB), 2011.  

[23] F. Monrose and A.D. Rubin, “Keystroke Dynamics as a 
Biometric for Authentication”, Future Generation 
Computing Systems, vol. 16, no. 4, pp. 351–359, 2000. 

[24] A. Peacock, X. Ke, and M. Wilkerson. “Typing patterns: A 
key to user identification”, IEEE Security and Privacy, 
2(5):40–47, 2004. 

[25] S. Prabhakar, S. Pankanti, and A. K. Jain, “Biometric 
Recognition: Security and Privacy Concerns”, IEEE 
Security and Privacy Magazine, Vol. 1, No. 2, pp. 33-42, 
2003.  

[26] J.A. Robinson et al., “Computer User Verification Using 
Login String Keystroke Dynamics”, IEEE Trans. Systems, 

122



  
 
 

Man and Cybernetics, Part A, vol. 28, pp. 236–241, Mar. 
1998. 

[27] T. Sim and R. Janakiraman, “Are digraphs good for free-
text keystroke dynamics? ”, IEEE CVPR, pp. 17-22, 2007. 

[28] E. Al Solami, C. Boyd, A. Clark, and A. K. Islam, 
“Continuous Biometric Authentication: Can It Be More 
Practical?”, IEEE Int’l Conf. on High Performance 
Computing and Communications (HPCC), pp. 647–652, 
2010.  

[29] R. Spillane, “Keyboard Apparatus for Personal 
Identification”, IBM Technical Disclosure Bulletin, vol. 17, 
no. 3346, 1975. 

[30] D. Umphress and G. Williams, “Identity Verification 
through Keyboard Characteristics”, Int’l J. Man-Machine 
Studies, Vol. 23, No. 3, pp. 263–273, 1985. 

[31] U. Uludag, S. Pankanti, S. Prabhakar, and A. K.Jain, 
“Biometric Cryptosystems: Issues and Challenges”, 
Proceedings of the IEEE, Special Issue on Enabling 
Security Technologies for Digital Rights Management, Vol. 
92, No. 6, June 2004. 

[32] A. Vadivel, A.K. Majumdar, and S. Sural, “Performance 
comparison of distance metrics in content-based image 
retrieval applications”, Proc. of Int’l. Conf. on Information 
Technology, Bhubaneswar, India, pp. 159–164, 2003. 

[33] J. D. Woodward, N. M. Orlans, and P. T. Higgins. 
“Biometrics: Identity Assurance in the Information Age”, 
McGraw-Hill, New York, USA, 2003. 

[34] R. Germain, A N. Yager and T. Dunstone. “The Biometric 
Menagerie”, IEEE PAMI, Vol. 32, No. 2, 2010. 

[35] R. V. Yampolskiy, V. Govindaraju, “Behavioral 
Biometrics: A Survey and Classification”, Int’l J. 
Biometrics, Vol. 1, No. 1, 2008. 

[36] E. Yu and S. Cho. “GA-SVM wrapper approach for feature 
subset selection in keystroke dynamics identity 
verification”, In Proc. Int’l Joint Conf. on Neural Networks 
(IJCNN), pp. 2253–2257, 2003. 

[37] R. Zack, C. Tappert, and S. Cha, “Performance of a long-
text-input keystroke biometric authentication system using 
an improved k-nearest-neighbor classification method”,  
IEEE Int’l Conf. on Biometrics: Theory Applications and 
Systems (BTAS), pp. 1-6, 2010. 

[38] Benjamin Ngugi, Beverly K. Kahn, and Marilyn Tremaine, 
“Typing Biometrics: Impact of Human Learning on 
Performance Quality”, J. Data and Information Quality, 
Vol. 2, No. 2, p. 11, 2011. 

123


