
 A Survey On Web Application Vulnerabilities(SQLIA,XSS)Exploitation and
Security Engine for SQL Injection

Rahul Johari
USIT, GGSIP University

Sector 16-C Dwarka
Delhi, India

rahuljohari@hotmail.com

Pankaj Sharma

 CERT-In,
Ministry of Communications and IT

Govt. of India
Delhi India

Pankaj.vats@gmail.com

 Abstract— Today almost all organizations have improved their
performance through allowing more information exchange
within their organization as well as between their distributers,
suppliers, and customers using web support. Databases are
central to the modern websites as they provide necessary data
as well as stores critical information such as user credentials,
financial and payment information, company statistics etc.
These websites have been continuously targeted by highly
motivated malicious users to acquire monetary gain.
Structured Query Language (SQL) injection and Cross Site
Scripting Attack (XSS) is perhaps one of the most common
application layer attack technique used by attacker to deface
the website, manipulate or delete the content through inputting
unwanted command strings. Structured Query Language
Injection Attacks (SQLIA) is ranked 1st in the Open Web
Application Security Project (OWASP) [1] top 10 vulnerability
list and has resulted in massive attacks on a number of
websites in the past few years. In this paper, we present a
detailed review on various types of Structured Query
Language Injection attacks, Cross Site Scripting Attack,
vulnerabilities, and prevention techniques. Besides presenting
our findings from the survey, we also propose future
expectations and possible development of countermeasures
against Structured Query Language Injection attacks.

Keywords- SQL Injection Attack, Static Analysis, Dynamic

Analysis, Web Vulnerabilities, Unauthorized Access,
Authentication Bypass, Input Validation, Database Mapping etc.

I. INTRODUCTION
 SQL Injection Attacks (SQLIAs)-Structured Query

Language (SQL) is an interpreted language used in database
driven web applications which construct SQL statements that
incorporate user-supplied data or text. If this is done in an
unsafe manner, then the web application may be vulnerable
to SQL Injection Attack i.e. If user supplied data is not
properly validated then user can modify or craft a malicious
SQL statements and can execute arbitrary code on the target
machine or modify the contents of database.

Problem formalization- Any web application can be
formalized with respect to SQL Injection Attack as follows:

• It accepts the input from user or system.

• It concatenates input with hardcoded SQL
statement and builds complete query structure.

• Query generated gets executed and concatenates
result with HTML code.

In the context of above formalization SQL Injection

Attack is targeted on a program at the database layer which
is connected to a web application. This SQL Injection Attack
exploits weakness or vulnerability in the target program to
properly verify the input supplied to it through a web form.
The Common Weakness Enumeration (CWE) framework [2]
which provides unified set of software weaknesses defined
[3]SQL injection weakness as “not neutralizing or
incorrectly neutralizing special elements that could modify
the intended SQL command”. In a typical SQL injection
attack the attacker posts specially crafted Structured Query
Language (SQL) statements which are executed in the
database server and produce malicious outcomes.

II. SQL INJECTION BACKGROUND

A. Why SQL Injection is a major Threat?
The vulnerability trends indicate that significant portion

of the vulnerabilities are in applications. Further Cross site
scripting and SQL injection are prominent application
vulnerabilities among those reported in applications. The
SQL injection attacks pose greater risk due to the fact that
they impact databases which are critical to any organization.
From response perspective also, the remedial action need to
be taken by the developer or programmer since the flaw need
to be corrected by code level changes. This requires
comparatively longer times to take corrective actions after
SQL injection vulnerabilities are detected. The attack trends
also indicate that SQL injection vulnerabilities are exploited
during recent years, in mass scale on vulnerable web
applications. Mass scale web intrusions were carried out by
“ASPROX” botnet during 2008 and 2010 which resulted in
infection of number of websites in a short span of time.
ASPROX used specially formed malicious SQL queries to
infiltrate vulnerable databases. In a typical attack ASPROX
used Google queries to harvest vulnerable ASP pages and
carried out SQL injection and subsequently inserting iFrame
links into databases. These iFrames were used to conduct

2012 International Conference on Communication Systems and Network Technologies

978-0-7695-4692-6/12 $26.00 © 2012 IEEE

DOI 10.1109/CSNT.2012.104

450

2012 International Conference on Communication Systems and Network Technologies

978-0-7695-4692-6/12 $26.00 © 2012 IEEE

DOI 10.1109/CSNT.2012.104

455

2012 International Conference on Communication Systems and Network Technologies

978-0-7695-4692-6/12 $26.00 © 2012 IEEE

DOI 10.1109/CSNT.2012.104

453

drive-by-download attacks wherein visitors of affected
websites are redirected to malicious websites which are used
to propagate malware on to users’ systems. Hence, SQL
Injection could be very dangerous in many cases depending
on the platform where the attack is launched and it gets
success in injecting rogue users to the target system.

B. Impact of SQL Injection
As we already mentioned SQL injection attack is

accomplished by providing data (inclusion of SQL queries)
from an external source which is further used to dynamically
construct a SQL query. The impact and consequences of
SQL injection attacks can be classified as follows:

1) Confidentiality: Loss of confidentiality is a major
problem with SQL Injection attacks since SQL databases
generally hold sensitive and critical information which could
be viewed by unauthorized users as a consequence of
successful SQL injection attack.

2) Integrity: Successful SQL injection attack allows

external source to make unauthorized modifications such as
altering or even deleting information from target databases.

3) Authentication: Poorly written SQL queries do not

properly validate user names and passwords, which allows
unauthenticated entity or attacker to connect to the affected
database or application as an authenticated user, without
initial knowledge of the password or even user name.

4) Authorization: Successful exploitation of SQL

injection vulnerability, allows attacker to change
authorization information and gain elevated privileges if the
authorization information is stored in the affected database

In real world scenario, it is very hard to detect the SQL
injection prior to its impact. In most number of scenarios,
unauthorized activity is performed by the attacker through
valid user credentials or by using inherent features of
database application such as malicious modification of
existing SQL Queries of web application that are accessing
critical sections of the affected databases.

III. CROSS SITE SCRIPTING (XSS)
Cross-site Scripting (XSS) is another common web
application attack technique that involves echoing attacker-
supplied code into a user’s browser instance or client via web
pages viewed by the target users. Here the attackers host or
inject attack code written in different static or dynamic
contents such as HTML, Java, JavaScript, ActiveX, Flash or
any other browser supported technology.

When an attacker gets a user’s browser to execute his/her
script, the script will run within the security context (or zone)
of the hosting web site. With this kind of privilege, the

application code has the ability to read, change and transmit
any critical data accessible by the browser. Successful XSS
attack allows attackers to hijack user’s account via cookie,
redirecting user to another website from the website visited
and there by facilitating other types of attacks such as
phishing or drive-by-download attacks. XSS attack poses
significant risk in cases where the browser interacts closely
with file system on the user’s computers for loading content.
XSS attacks are commonly used to hijack sessions of users
visiting websites facilitating e-Commerce, wherein malicious
script/code runs on user’s client and captures cookie
information of user’s browser allowing hijacking of session.

There are different types of XSS attacks, primarily two types
called “persistent” and “non-persistent” XSS are mentioned
here. The difference between the two types lie in the way the
server side and client side vulnerabilities are exploited.

A. Stored or Persistent attacks-
Occurs when the malicious code is submitted to a web
application where it’s stored permanently. Examples of an
attacker’s favorite targets often include web mail messages,
and forum posts. When a user visits the polluted webmail
message or forum , the script/code executes in the user’s
context. This attack scenario does not require enticing
targeted user to click on any URL.

B. Reflected or Non-persistent attacks

Occurs when the server does not properly sanitize the output
server to a visiting web browser/client. In typical attack
scenario, the attacker target visitor of a specific website
‘abc.com’ containing reflected XSS vulnerability and tricks
targeted user to click on a maliciously crafted URL. The user
intend to visit the ‘abc.com’ and does so but in the process
the client side script/code contained in the malicious URL
supplied by the attacker executes thereby enabling the
attacker to gain access to sensitive user credentials, cookies
etc.

C. Impact of Cross-site Scripting Attack(XSS)-

The impact of Cross-site scripting attack varies depending up
on the level of access and type of information gained by the
attacker. The consequences of successful XSS attack range
from annoyance to compromise of user’s credentials.
Typically XSS attacks are used as part of larger scheme of
attacks such as redirection of visitors of a trusted website to
malicious websites, malware propagation, e-Commerce
frauds etc.

IV. SQL INJECTION DETECTION AND
PREVENTION

In order to prevent SQL Injection attacks many existing
techniques, such as Content filtering, penetration testing, and

451456454

defensive coding, can be used to detect and prevent a subset
of the SQL Injection Vulnerabilities. Over the past years,
there has been plenty of research going on in the both
academic institutes as well as industries to prevent injection
attacks. Following are some prevention mechanism proposed
by researchers which has been seen as more effective one.

A. "An Authentication Scheme using Hybrid Encryption "
(Indrani Balasundaram, E.Ramaraj)-(2011)

[4]Indrani Balasundram and E.Ramaraj proposed an
authentication scheme in which they propose an algorithm
which uses both Advance Encryption Standard (AES) and
Rivest-Shamir-Adleman(RSA) to prevent SQL injection
attacks. In this method a unique secret key is fixed or
assigned for every client or user. On the server side server
uses private key and public key combination for RSA
encryption. In this method, two level of encryption is applied
on login query:

• To encrypt user name and password symmetric key
 encryption is used with the help of user’s secret key.
• To encrypt the query the scheme uses asymmetric
 key encryption by using public key of the server.

The whole procedure completed in three phases :

• Registration Phase
• Login Phase
• Verification Phase

The proposed scheme is very efficient, it needs 961.88ms
for encryption or decryption and this can be negligible.

Some disadvantages also exist with this approach:

• It is not made for URL based SQL injection attacks.
• It is Very difficult to maintain every user secret key
 at server side and client side.
• There is no security mechanism at registration
 phase.

B. "Effective SQL Injection Attack Reconstruction Using
Network Recording"(Allen Pomeroy and Qing
Tan)(2011)

[5]Allen Pomeroy and Qing Tan has suggested a technique
for finding vulnerabilities in Web Application such as SQL
injection attack by network recording. In this approach
network forensic techniques and tools are used to analyze the
network packets containing get and post requests of a web
application. This approach uses network based Intrusion
Detection System (IDS) to trigger network recording of
suspected application attacks.
Some disadvantages also exist with this approach:

• Difficult to record high volume traffic.

• Packet fragmentation attack could bypass this
approach.

C. "Insecure Query Processing in the Delay/Fault
Tolerant Mobile Sensor Network (DFT-MSN) and
Mobile Peer to Peer Network"(Rahul Johari and
Neelima Gupta)(2011)

[6]Rahul Johari and Neelima Gupta proposed set of
SQL/TIQL queries that are exchanged between the pair of
nodes in the DFT-MSN and MP2PN.They also portrays their
execution on Oracle 9i Enterprise Edition Release 9.2.0.1.0
Production and expose how these SQL queries are
vulnerable to the SQL Injection Attack which can either be
launched manually or through the various proprietary and
open source SQL Injection tools.

D. "Secure Query Processing In Delay Tolerant Network
Using Java Cryptography Architecture"(Rahul Johari
and Neelima Gupta)(2011)

[7]Rahul Johari and Neelima Gupta proposed a lightweight
cryptography authentication mechanism at the source node
and destination nodes of Delay Tolerant Network to prevent
unauthorized modification of SQL queries during bundle
transfer between nodes. The proposed method uses message
digest (MD5) Hashing algorithm for encryption of data
stream before it is transmitted via multiple intermediate
nodes so as to reach to the destination node.

E. " SQL Injection Attack Detection using the Removal of
SQL Query Attribute Values"(Jeom-Goo Kim)(2011)

[8]Jeom-Goo Kim presents a effective approach of removal
of SQL query passed by user in SQL query attributes values.
This approach uses combined static and Dynamic Analysis.
The proposed method will utilize a function which has the
capability to detect the attribute values of static SQL query
in web application. This function also detected the SQL
queries generated at runtime. This approach profile the SQL
query generated from normal users and compare this with
SQL query generated dynamically by the attacker.

Some disadvantages also exist with this approach are:

• Developer learning is required.
• Source code adjustment is needed .

F. "Dynamic Candidate Evaluations Approach to prevent
SQL injection"(P. Bisht, P. Madhusudan, and V. N.
Venkatakrishnan)(2010)

[9]Prithvi Bisht and his team members propose a tool called
Candidate evaluation for Discovering Intent Dynamically
(CANDID).This method record the programmer-intended
SQL query structure on any input(candidate inputs) from the
legitimate user and compare this with the query structure
generated with the attackers input.

452457455

Some disadvantages also exist with this approach are:
• Developer learning is required.
• It is not possible to make a complete set of

legitimate inputs for a large web application.

G. "Obfuscation-based Analysis of SQL Injection
Attacks"(Raju Halder and Agostino Cortesi)(2010)

[10]In this method an obfuscation/deobfuscation based
technique is proposed to detect SQL Injection Attacks
(SQLIA) in a SQL query before sending it to database. this
technique has three phases:

• Static phase: In the static phase, the SQL Queries
in the web application code are replaced by
queries in obfuscated form.

• Dynamic Phase: In this phase user inputs are

merged with the obfuscated query at run-time.
After merging dynamic verifier checks the
obfuscated query at atomic formula level to detect
the SQL injection attack.

• If no SQL injection found during the verification

phase reconstruction of the original query from the
obfuscated query is carried out before submitting
it to the database.

H. "SQL injection Detection via Automatic Test Case
Generation of Programs" (Michelle Ruse, Tanmoy
Sarkar, Samik Basu)(2010).

[11]This approach uses automatic test case generation to
detect SQL Injection Vulnerabilities. The main idea behind
this framework is based on creating a specific model that
deals with SQL queries automatically. It also captures the
dependencies between various components of the query. The
used CREST(Automatic Test Generation Tool for C) test-
generator and identify the conditions in which the queries are
vulnerable. Based on the results, the methodology is shown
to be able to specifically identify the causal set and obtain
85% and 69% reduction respectively while experimenting on
few sample examples.

I. "Combinatorial Method for Preventing SQL Injection
Attacks" (R. Ezumalai, G. Aghila) 2009

[12]This approach uses both static and dynamic approach to
detect SQL injection. It is a signature based SQL injection
detection technique. In this approach they generate hotspots
for SQL queries in web application code and divide these
hotspots into tokens and send it for validation where it uses
Hirschberg's algorithm, which is a divide and conquer
version of the Needleman-Wunsch algorithm, used to detect
SQL injection attacks. Since, it is defined at the application
level, requires no change in the runtime system, and imposes
a low execution overhead.

J. "An Approach for SQL Injection Vulnerability
Detection- AMNeSIA"(M. Junjin)(2009)

 [13]Analysis and Monitoring for NEutralizing SQL-
Injection Attacks (AMNeSIA) is a fully automated technique
for detecting and preventing SQL injection attacks. It works
in two phases.

• Static analysis: In this phase it analyze web
application code and automatically generate the
SQL query mode on the basis of possible
legitimate queries.

• Runtime analysis: In this phase it scan all

dynamically generated SQL queries and checks
them to be with compliance to the statically
generated models in the previous step. When this
step detects that a query is not matched with the
query model, it classifies the input as an SQL
injection attack, logs the necessary information and
throws an predefined exception that the application
can then deal with suitably.

Principle behind AMNEeSIA:

• Generation Hotspots: In this step the tool

analyzing the web application code by simply scanning the
code and identifying the hotspots which are the locations
where the SQL queries are sent for execution to the databse.

• SQL query model: The Application class files are
given as input to JSA (Java String Analyzer). It outputs a
NDFA (Non-Deterministic Finite Automata) with all
character level possibilities of the strings. It further analyzes
the NDFA to create a SQL query model and change it into
semantically meaningful SQL keywords, operators and
literal values.

• Instrumention of the Web Application: In this phase,
AMNeSIA creates a function that checks for queries at
runtime. It inserts the call to the a function before accessing
the database at each place. The function call is invoked with
two parameters; the SQL query that is to be submitted and
the Hotspot id.

• Runtime Validation: During runtime, the query is
sent to the runtime validation before accessing the database.
The validator program parses the SQL query string into a
sequence of tokens. Validator program verifies for query
acceptance test by traversing the sequence of tokens.
Depending on test result, it allows/restrict the database
access.

Limitations and Assumptions of AMNeSIA model in JSP:

There is a chance to get false positives and false negatives in
some situations.

453458456

• When the string analysis results in a SQL query
model that is overly conservative and includes
spurious queries (i.e. queries that could not be
generated by the application) that happen to match
an attack.

• When a legitimate query happens to have the same”
SQL structure” of an attack. For example, if a
developer adds conditions to a query from within a
loop, an attacker who inserts an additional condition
of the same type would generate a query that does
not violate the SQL-query model

• In some cases, as the analysis cannot distinguish a
variable or a hard-coded SQL token, it raises false
positives for a string model that is precise enough.
In particular, if the hard-coded string is used in the
application to construct a SQL token, the technique
will generate an incomplete SQL-query model.

 AMNeSIA tool makes use of Java String Analyzer (JSA)
library to statically analyze the source code and thereby get
the query models. Thus it can’t be used for web applications
other than those built on JSP such as PHP or ASP

K. "Automated generation of prepared statement to
remove SQL injection vulnerabilities"(Stephen Thomas ,
Laurie Williams, Tao Xie) (2008)

[14]Stephen Thomas presents an algorithm in which
prepared statement in SQL queries are replaced by secure
prepare statements for removing SQL vulnerabilities
.Prepared statements have a static structure, which prevents
SQL injection attacks from changing the logical structure of
a prepared statement. In this approach they created a
algorithm which replaces prepared statement and a
corresponding tool for automated fix generation. Then
conducted four case studies of open source projects to
evaluate the capability of the algorithm and its automation.
The results show that algorithm correctly replaced 94% of
the SQL injection vulnerabilities in these projects.

V. CROSS SITE SCRIPTING (XSS) DETECTION
AND PREVENTION

A. "Protecting Cookies from Cross Site Script
AttacksUsing Dynamic Cookies Rewriting Technique".
(Rattipong Putthacharoen, Pratheep Bunyatnoparat)
(2011)

[15] This approach aims to change the cookies in such a way
that they will become useless for XSS attacks. This
technique is called "Dynamic Cookie Rewriting”
implemented in a web proxy where it will automatically
replace the cookies with the randomized value before
sending the cookie to the browser. In this way browser will
keep the randomized value instead of original value sent by
the web server. At the web server end the return cookie
from the browser again rewritten to its original form at the
web proxy before being forwarded to the web server. So in

case if XSS attacks steal the cookies from the browser’s
database, the cookies cannot be used by the attacker to
impersonate the users. This technique is not tested with
HTTPs connections.

B. "An Execution-flow Based Method for Detecting Cross-
Site Scripting Attacks"(Qianjie Zhang, Hao Chen, Jianhua
Sun)(2010)

[16]Qianjie Zhang, Hao Chen, Jianhua Sun presents an
execution-flow analysis for JavaScript programs running in a
web browser to prevent Cross-site Scripting (XSS) attacks.In
this approach they use Finite-State Automata (FSA) to
model the client-side behavior of Asynchronous JavaScript
and XML (AJAX) applications under normal execution. In
this method system is deployed in proxy mode. In this mode
the proxy analyzes the execution flow of client-side
JavaScript and checks them to be with compliance to the
models generated by FSA. It stops potentially malicious
scripts, which do not conform to the FSA before the
requested web pages arrive at the browser. This method is
evaluated against many real-world web applications and the
result shows that it protects against a variety of malicious
scripts to prevent XSS attacks and has an acceptable
performance overhead.

C. "Automatic Creation of SQL Injection and
Cross-site Scripting (XSS) Attacks(Ardilla)" (Adam
Kie�zun, Philip J. Guo, Karthick Jayaraman, Michael D.
Ernst)(2010)

[17] Adam Kie�zun has suggested a technique for finding
vulnerabilities in Web Application such as SQL injection
attack and Cross site scripting (XSS).They implement this
technique as an automated tool called Ardilla. This method
uses static code analysis to find vulnerabilities. This
technique works source code of the application , creates
concrete inputs that expose vulnerabilities and operates
before the application is deployed. It analyses application
internals to discover vulnerabilities in the code. It is based
on input generation, taint propagation, and input mutation to
find variants of an execution that exploit vulnerability. This
tool is designed for php applications.

Some disadvantages also exist with this approach are:

• Developer availability and learning is required.
• Source code adjustment is needed.
• If the original developer left the project it is very

difficult to patch the vulnerabilities.
• It is tested on PHP based applications.

VI. CONCLUSIONS
From the survey of various articles/papers it is found that
SQL Injection and Cross-site Scripting (XSS) Attacks are
most powerful and easiest attack methods on the Web

454459457

Application. This study presents a survey of current
techniques for defending against SQL injection and XSS
exploits. Our review finds that existing techniques suffer
from one or more of the following five weaknesses:

• Inherent limitations
• Incomplete implementations
• Complex frameworks
• Runtime overheads
• Intensive manual work requirements
• False positives and false negatives

The academic field and industry has developed promising
strategies such as AMNeSIA , ARDILLA etc. products
which are rising and likely to become essential parts of
comprehensive online data protection strategies. Yet,
despite the effectiveness of these products, we believe that
their use should not excuse developers from applying
preventive coding techniques, as these hold true potential
when implemented properly. Keeping in view the emerging
web technologies and extensive usage of highly interactive
content over Internet, it is imperative for the software
development houses and developers to frame and follow
appropriate security framework to build security during
Software Development Life Cycle.

ACKNOWLEDGEMENT

I wish to express sincere gratitude to the administration of
Department of Information Technology Govt. of India and
GGSIP University for providing the academic environment
to pursue research activities. In particular I would like to
thank Mr. S. S. Sarma, Scientist 'E' (CERT-In) for inputs.

REFERENCES
[1] http://www.owasp.org/index.php/Top_10_2010-A1-Injection,
retrieve on 13/01/2010

[2] http://cwe.mitre.org/index.html

[3] http://cwe.mitre.org/data/definitions/89.html

[4]- Indrani Balasundaram, E.Ramaraj “An Authentication Scheme for
Preventing SQL Injection Attack Using Hybrid Encryption(PSQLIA-
HBE”(ISSN 1450-216X Vol.53 No.3 (2011),pp.359-368)

[5]Pomeroy, A Qing Tan Sch. of Comput. & Inf. Syst., Athabasca Univ.,
Athabasca, AB, Canada " Effective SQL Injection Attack Reconstruction
Using Network Recording" in Computer and Information Technology
(CIT), 2011 IEEE 11th International onference Issue Date: Aug. 31 2011-
Sept. 2 2011 On page(s): 552 - 556

[6 Johari R.,Gupta N., “Insecure Query Processing in Delay/Fault Tolerant
Mobile Sensor Network(DFT-MSN) and Mobile Peer to Peer Network”
accepted by Springer (LNCS) in Communications in Computer and
Information Science (CCIS) Series,Chennai (July 2011).

[7] Johari R.,Gupta N., “Secure Query Processing in Delay Tolerant
Network Using Java Cryptography Architecture”. 2011 IEEE
Computational Intelligence and Communication Networks (CICN)
Gwalior, India, 7-9 Oct. 201

[8]Jeom-Goo Kim; Dept. of Comput. Sci., Namseoul Univ., Cheonan,
South Korea " Injection Attack Detection using the Removal of SQL Query
Attribute Values" in Information Science and Applications (ICISA), 2011
International Conference Issue Date: 26-29 April 2011, On page(s): 1 - 7

[9] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan.
"CANDID:Dynamic Candidate Evaluations for Automatic Prevention of
SQL Injection Attacks". ACM Trans. Inf. Syst. Secur., 13(2):1–39, 2010..

[10] Raju Halder and Agostino Cortesi, “Obfuscation-based Analysis of
SQL Injection Attacks”. 978-1-4244-7755-5/10/$26.00 ©2010 IEEE

[11] M. Ruse, T. Sarkar and S. Basu. "Analysis & Detection of SQL
Injection Vulnerabilities via Automatic Test Case Generation of Programs."
10th Annual International Symposium on Applications and the Internet pp.
31 – 37 (2010)

[12] R. Ezumalai, G. Aghila, Combinatorial Approach for Preventing SQL
Injection Attacks. 2009 IEEE International Advance Computing
Conference (IACC 2009) Patiala, India, 6-7 March 2009

[13] M. Junjin, “An Approach for SQL Injection Vulnerability
Detection,” Proc. of the 6th Int. Conf. on Information Technology:New
Generations, Las Vegas, Nevada, pp. 1411-1414, April 2009.

[14]Stephen Thomas *, Laurie Williams, Tao Xie" On automated prepared
statement generation to remove SQL injection vulnerabilities "Department
of Computer Science, Box 8206, North Carolina State University, Raleigh,
NC 27695, USA

[15] Rattipong Putthacharoen, Pratheep Bunyatnoparat " Protecting
Cookies from Cross Site Script Attacks Using Dynamic Cookies Rewriting
Technique" Feb. 13~16, 2011 ICACT2011.
Method for Detecting Cross-Site Scripting Attacks".

[16] Qianjie Zhang, Hao Chen, Jianhua Sun “An Execution-flow Based
Method for Detecting Cross-Site Scripting Attacks” China(2010)

[17] " Automatic Creation of SQL Injection and Cross-Site Scripting
Attacks "ARDILLA(Adam Kie�zun, Philip J. Guo, Karthick Jayaraman,
Michael D. Ernst)

455460458

