
Transport Layer
Ao Tang

Cornell University
Ithaca, NY 14853

Lachlan L. H. Andrew
California Institute of Technology

Pasadena, CA 91125

Mung Chiang
Princeton University
Princeton, NJ 08544

Steven H. Low
California Institute of Technology

Pasadena, CA 91125

I. INTRODUCTION

The Internet has evolved into an extremely large complex system and changed many important aspects of our lives. Like any
complex engineering system, the design of the Internet is carried out in a modular way, where each main functional module
is called a “layer”. One of the layering structures often used is the five-layer model consisting of the physical layer, the link
layer, the network layer, the transport layer and the application layer1. See Figure 1 for a simple illustration.

The sending and receiving computers each run analogous stacks, with data being passed down the stack from the sending
application, and then up the receiver’s stack to the receiving application. The physical layer is the part which actually moves
information from one place to another, such as by varying voltages on wires, or generating electromagnetic waves. The
application layer is the part with which users interact, such as the hypertext transport protocol (HTTP) used to browse web,
or the simple mail transfer protocol (SMTP) used to send email.

Each layer consists of protocols to specify such things as the data format, the procedure for exchanging data, the allocation
of resources, and the actions that need to be taken in different circumstances. This protocol can be implemented in either
software or hardware or both. This article concerns transport layer protocols and their associated algorithms, mainly focusing
on the wireline Internet but also discussing some other types of networks such as wireless ones.

The transport layer manages the end-to-end transportation of packets across a network. Its role is to connect application
processes running on end hosts as seamlessly as possible, as if the two end applications were connected by a reliable dedicated
link, thus making the network “invisible”. To do this, it must manage several non-idealities of real networks: shared links, data
loss and duplication, contention for resources, and variability of delay. By examining these functionalities in turn in sections II
to V, we will provide a brief introduction to this important layer, including its functions and implementation, with an emphasis
on the underlying ideas and fundamentals. We will also discuss possible directions for the future evolution of the transport
layer and suggest some further reading in sections VI and VII.

II. MULTIPLEXING: MANAGING LINK SHARING

One basic function of the transport layer is multiplexing and demultiplexing. Usually there are multiple application processes
running on one host. For example, a computer may be sending several files generated by filling in web forms, while at the same
time sending emails. The network layer only cares about sending a stream of data out of the computer. Therefore, the transport
layer needs to aggregate data from different applications into a single stream before passing it to the network layer. This is
called multiplexing. Similarly, when the computer receives data from the outside, the transport layer is again responsible of
distributing that data to different applications — such as a web browser or email client — in a process called demultiplexing.
Figure 1 also shows the data directions for multiplexing (sending) and demultiplexing (receiving).

1There are also some other ways of defining these layers, e.g., the standard OSI (open systems interconnection) reference model defines seven layers with
the session layer and the presentation layer added.

Fig. 1. Internet protocol stack



Multiplexing is achieved by dividing flows of data from the application into (one or more) short packets, also called segments.
Packets from different flows can then be interleaved as they are sent to the network layer. Demultiplexing is achieved by
allocating each communication flow a unique identifier. The sender marks each packet with its flow’s identifier, and the
receiver separates incoming packets into flows based on their identifiers. In the Internet, these identifiers consist of transport
layer port numbers, and additionally the network layer addresses of the sender and receiver and a number identifying the
transport layer protocol being used. Even before a flow is started, a “well-known” port number can be used to identify which
process on the receiver the sender is attempting to contact; for example, web servers are “well-known” to use port 80.

Multiplexing and demultiplexing is one of the most fundamental tasks of the transport layer. Other functions are required by
some applications but not by others, and so different transport layer protocols provide different subsets of the possible services.
However, essentially all transport layer protocols perform at least multiplexing and demultiplexing.

There are two dominant types of transport layer protocol used in the Internet. One is UDP (User Datagram Protocol) and the
other is TCP (Transmission Control Protocol). The former provides unreliable and connectionless service to the upper layers,
while the latter generates reliable and connection-based service.

A. UDP: Multiplexing only

UDP is a very simple protocol. It is called connectionless because all UDP packets are treated independently by the transport
layer, rather than being part of an on-going flow.2 Besides minor error checking, UDP essentially only does multiplexing and
demultiplexing. It does not provide any guarantee that packets will be received in the order they are sent, or even that they
will be received at all. It also does not control its transmission rate. In fact, the rationale behind the design of UDP is to let
applications have more control over the data sending process and reduce the delay associated with setting up a connection.
These features are desirable for certain delay-sensitive applications such as streaming video and Internet telephony. In general,
applications that can tolerate certain data loss/corruption but are sensitive to delay would choose to use UDP.

B. TCP: Reliable connection oriented transport

In contrast to UDP, TCP provides a connection oriented service, meaning that it sends data as a stream of related packets,
making concepts such as the order of packets meaningful. In particular, TCP provides reliable service to upper layer applications,
ensuring that the packets are correctly received and in the order in which they are sent.

At the start of a connection, TCP uses a three-way handshake to establish a connection between sender and receiver, in
which they agree on what protocol parameters to use. This process takes 1.5 round trip times (one side sends a SYNchronize
packet, the other replies with a SYN and an ACKnowledge packet, and the first confirms with an ACK), which is an overhead
avoided by UDP.

TCP receives data from the application as a single stream, e.g., a large file, and segments it into a sequence of packets. It
tries to use large packets to minimize overhead, but there is a maximum size which the network can carry efficiently, called
the MTU (maximum transfer unit). TCP is responsible for choosing the correct size, in a process called path MTU discovery.
In contrast, UDP is given data already segmented into packets, and so it is the application’s responsibility to observe MTU
restrictions.

TCP is the most common transport protocol in the Internet; measurements show that it accounds for about 80% of the
traffic [5]. Applications such as file transmission, web browsing and email use it partly because of its ability to transfer
continuous streams of data reliably, and partly because many firewalls do not correctly pass other protocols. The following
two sections, on reliable transmission and congestion control, describe in greater detail the main features of TCP.

III. RELIABLE TRANSMISSION: MANAGING LOSS, DUPLICATION AND REORDERING

When the underlying network layer does not guarantee to deliver all packets, achieving reliable transmission on top of this
unreliable service becomes an important task. Reasons for packet loss include transient routing loops, congestion of a resource,
or physical errors which were not successfully corrected by the physical or link layer.

This problem is very similar to that faced by the link layer. The difference is that the link layer operates over a single
unreliable physical link to make it appear reliable to the network layer, while the transport layer operates over an entire
unreliable network, to make it appear reliable to the application. For this reason, the algorithms employed at the transport layer
are very similar to those employed at the link layer, and will be reviewed briefly here.

ARQ (Automatic Repeat-reQuest) is the basic mechanism to deal with data corruption. When the receiver receives a
correct data packet, it will send out a positive acknowledgement (ACK); when it detects an error, it will send out a negative
acknowledgement (NAK).

Because physically corrupted packets are usually discarded by the link layer, the transport layer will not directly observe
that a packet has been lost, and hence many transport layer protocols do not explicitly implement NAKs. A notable exception
is multicast transport protocols. Multicast protocols allow the sender to send a single packet, which is replicated inside the

2It is common for the application layer to implement flows on top of UDP, but that is not provided by UDP itself.



Fig. 2. Sliding window flow control, with packet W + 1 being lost.

network to reach multiple receivers, possibly numbering in the thousands. If each sent an ACK for every packet, the receiver
would be flooded. If instead receivers send NAKs only when they believe packets are missing, the network load is greatly
reduced. TCP implicitly regards ACKs for three or more out-of-order packets (resulting in “duplicate ACKs”) as forming a
NAK.

An interesting problem immediately arises. If the sender only sends the next packet when it is sure the first one is received
correctly, the system will be very inefficient. In that case, the sender would only be able to send one packet every round trip
time (the time it takes for a packet to reach the destination and the ACK to return), while the time taken to send a packet is
usually much smaller than the round trip time. This is especially true for today’s high speed networks. For example, consider a
1 Gbit/s (1,000,000,000 bits per second) connection between two hosts that are separated by 1500 kilometers and therefore have
a round trip distance of 3000 kilometers. Sending a packet of size 10 kbit takes only 10 µs (ten microseconds) while the round
trip time cannot be smaller than the physical distance divided by the light of speed (300,000 kilometers per second), which
in this case is 10 ms. In other words, in this case the utilization of the sender is about 0.1% which is clearly not acceptable.
This is the motivation for the general sliding window algorithm which will be discussed in the following subsection.

A. Sliding window transmission control

The basic idea here is again simple: the sender sends more packets into the network while it is waiting for the acknowledge-
ment of the first packet. This certainly increases the utilization. On the other hand, it cannot send too much before receiving
ACKs as that may heavily congest the network or overflow the receiver. In general, the sender is allowed to send no more than
W packets into the network before receiving an acknowledgement. Here W is called the window size. If W = 1, it reverts to
the inefficient transmission previously discussed. Since the sender can send W packets every round trip time, the utilization is
increased by a factor of W if the network and receiver can handle the packets. If not, then there will be congestion and the
value of W must be reduced, which is the topic of the next section. The left of Figure 2 shows the case when packets are
successfully received. It shows that using W > 1 allows more than one packet to be sent per round trip time (RTT), increasing
the throughput of the connection.

However, things become a little more complex when W > 1 as now the sender need to keep track of acknowledgements
from more than one packet in one round trip time. This is done by giving every packet a sequence number. When a packet is
received, the receiver sends back an ACK carrying the appropriate sequence number.

When packets are received out of order, the receiver has three options, depending on the protocol. It may simply discard
packets which are received out of order, it may forward them immediately to the application, or it may store them so that it
can deliver them in the correct order once the missing packet has been received, possibly after being re-sent. Finally, if the
sender has not received an ACK for a particular packet for a certain amount of time, a timeout event occurs. After that, the
sender resends all packets that are sent out but have not yet been acknowledged.

B. Realization

The following example presents a simplified example of how the above ideas are realized by TCP, currently the most
widespread example of sliding window transmission control.

Example 1: Rather than acknowledging each individual packet, TCP ACKs cumulatively acknowledge all data up until the
specified packet. This increases the robustness to the loss of ACKs. Figure 2 shows the operation of TCP when packet W + 1
is lost. Initially, the window spans from 1 to W , allowing the first W packets to be sent. The sender then waits for the first
packet to be acknowledged, causing the window to slide to span packets 2 to W + 1, allowing the W + 1st packet to be sent.
This continues until the second window is sent, and after sending the 2W th packet the sender again must pause for an ACK to
slide the window along. However, this time, the W + 1st packet was lost, and so no ACK is received. When packet W + 2 is
received, the receiver cannot acknowledge it, since that would implicitly acknowledge packet W +1 which has not yet arrived.
Instead, it sends another ACK for the most recently received packet, W . This is repeated for all subsequent arrivals, until



xi(t)

pl(t)

Fig. 3. Two flows sharing a link, and also using non-shared links

W + 1 is received. When the sender receives the third duplicate ACK for W , it assumes that W + 1 was lost, and retransmits
it. It then continues transmitting from where it left off, with packet 2W + 1.

The precise response to packet loss of current TCP is more complex than in this example, because packet loss is treated as
a signal that a link in the network is overloaded, which triggers a congestion control response, as described in the following
section.

IV. CONGESTION CONTROL: MANAGING RESOURCE CONTENTION

When transport layer protocols were first designed, they were intended to operate as fast as the receiver could process the
data. The transport layer provided “flow control” to slow the sender down when the receiver could not keep up. However, in
1980s the Internet suffered from several famous congestion collapse, in which the sliding window mechanism was re-sending
so many packets that the network itself become overloaded to the point of inoperability, even when the receivers were not
overloaded.

Recall from the previous section that senders use W > 1 to increase the utilization of the network. Congestion occurred
because flows sought to utilize more than 100% of the network capacity. As a result, a set of rules were proposed [6] for how
senders should set their windows to limit their aggregate sending rate while maintaining an approximately fair allocation of
rates.

Congestion control considers two important topics: what rates would we ideally like to allocate to each flow in a given
network, and how can we achieve that in practice using only distributed control. The latter is made difficult because of the
decentralized nature of the Internet: senders do not know the capacity of the links they are using, how many other flows share
them, or how long those flows will last; links do not know what other links are being used by the flows they are carrying; and
nobody knows when a new flow will arrive. Figure 3 shows an example in which two flows each use three links, of which
they share one.

Let us now consider the current solutions to the problem of implementing congestion control in a scalable way, and then
examine the other problem of deciding what rate allocation is more desirable.

A. Existing algorithms

There are two main phases of a congestion control algorithm: slow start and congestion avoidance, punctuated by short
periods of retransmission and loss recovery. We now introduce both using the standard TCP congestion control algorithm,
commonly called TCP Reno3.

When a TCP connection begins, it starts in the slow start phase with an initial window size of 2 packets. This results in
slow initial transmission, giving rise to the name. It then rapidly increases its sending rate. It doubles its window every round
trip time until it observes a packet loss, or the window reaches a threshold called the “slow start threshold”. If a loss occurs,
the window is then halved, and in either case the system enters the congestion avoidance phase. Note that the sender increases
its transmission rate exponentially during the slow start.

In the congestion avoidance phase, the sender does what is known as Additive Increase Multiplicative Decrease (AIMD)
adjustment. This was first proposed by Chiu and Jain [3] as a means to obtain fair allocation, and implemented in the Internet
by Jacobson [6]. Every round trip time, if all packets are successfully received, the window is increased by 1 packet. However,

3Most systems actually implement a variant of Reno, typically NewReno, since Reno performs poorly when two packets are lost in a single round trip.
However, the differences do not affect the descriptions in this section, and so we use the term Reno.



TimeTime

Slow Start

window
W Congestion Avoidance

RTT

1

W/2

ssThreshold

2

Timeout

Fig. 4. TCP Reno Window Trajectory

acknowledgments

windo w
contro l

rate

windo w
transmission

contro l congestion
estimator

estimate

network

Fig. 5. Window based congestion control

when there is a loss event, then the sender will halve its window. Because large windows are reduced by more than small
windows, AIMD tends to equalize the size of windows of flows sharing a congested link [3]. Finally, if a timeout occurs, the
sender will start from slow start again. Figure 4 shows how the window evolves along time in TCP Reno. Importantly, TCP
Reno uses packet loss as congestion indication.

In summary, the basic engineering intuition behind most of congestion control protocols is to start probing the network
with a low transmission rate, quickly ramp up initially, then slow down the pace of increase, until an indicator of congestion
occurs and transmission rate reduced. Often packet loss or queueing delay [1] are used as congestion indicators, and packet
loss events are in turn inferred from local measurements such as three duplicated acknowledgements or timeout. These design
choices are clearly influenced by the views of wireline packet-switched networks, in which congestion is the dominant cause
of packet loss. The choice of the ramp-up speed and congestion indicators have mostly been based on engineering intuition
until recent developments in predictive models of congestion control have helped with a more systematic design and tuning
of the protocols.

This window adaptation algorithm is combined with the sliding window transmission control from Section III-A, to form
the whole window based congestion control mechanism, illustrated in Figure 5. The transmission control takes two inputs, the
window size and the acknowledgments from the network. The window size is controlled by the congestion control algorithm
such as TCP Reno, which updates the window based on the estimated congestion level in the network. In summary, with
window based algorithms, each sender controls its window size — an upper bound on the number of packets that have been
sent but not acknowledged. As pointed out by Jacobson [6], the actual rate of transmission is controlled or “clocked” by the
stream of received acknowledgments (ACKs): a new packet is transmitted only when an ACK is received, thereby ideally
keeping the number of outstanding packets constant and equal to the window size.

B. Theoretical foundation

As mentioned above, congestion control is essentially a resource allocation scheme that allocates the capacities of links to
TCP flows. It is desirable to be able to calculate the share of the capacity and discuss its properties, such as the fairness of
the allocation.



Fig. 6. A two-link network shared by three flows.

Many valuable models of TCP have been proposed. Since Kelly’s work in the late 1990s, generic congestion control protocols
have been modeled as distributed algorithms maximizing the total benefit obtained by the applications [7], [8], [11], [12]. This
“reverse-engineering” approach shows that existing TCP congestion control mechanisms are implicitly solving an underlying
global optimization, with an interpretation of link-price-based balancing of bandwidth demand by the end-users. Following
economic terminology, the user objective being maximized is called the utility, and the utility that the ith flow obtains by
sending at a rate xi is denoted Ui(xi). If each flow i uses a set of links L(i) and link l ∈ L(i) has capacity cl, then the
problem of maximizing the utility can be expressed as

max
x≥0

∑

i

Ui(xi)

subject to
∑

i:l∈L(i)

xi ≤ cl

This is a convex optimization problem provided that the utility functions follow the usual “law of diminishing returns”, that
is, the utility increase as the rate received increases but the incremental benefit becomes smaller. Such problems have a very
rich mathematical structure.

The theory of Lagrange duality for convex optimization allows the problem to be decomposed into sub-problems in which
each flow independently chooses its rate based on congestion signals from the links, such as packet loss or queueing delay,
which are computed based only on local information. Again following economic terminology, these congestion signals are
sometimes referred to as prices.

The strict convexity structure also implies that the optimal rates are unique, and that those rates are independent of many
properties of the links, such as their buffer sizes. In particular, as long as the congestion signal is zero when the sum of the
rates through the link is less than its capacity, it does not matter how the congestion signals are calculated; the equilibrium
rates will depend only on the utility functions, which are in turn determined by the TCP algorithm at the sender.

The choice of utility function determines the notion of fairness implemented by the network [14]. If the utility function is
almost linear, it reflects only slightly diminishing returns as the transmission rate is increased, and the network will seek to
maximize the sum of the rates of all flows, with no regard to fairness. At the opposite extreme, if the incremental benefit
decreases rapidly, the utility function will be very concave and max-min sharing is achieved. The max-min rate allocation is
the one in which no flow can increase its rate, except by reducing the rate of a flow which already has a lower rate. This is
often seen as the fairest way to allocate rates.

A logarithmic utility function results in a compromise between fairness and throughput known as proportional fairness.
Similarly, to a first approximation, the utility of the AIMD algorithm used by TCP Reno is

Ui(xi) = − 1
xiτ2

i

(1)

where τi is the round trip time of the flow i. This is similar to proportional fairness, but tends slightly towards improving
fairness at the expense of throughput, as will be seen in the following example.

Example 2: Consider a network with two congested links, each with a capacity of c. One flow uses both links, and each
link also carries a single-link flow, as shown in Figure 6.

The maximum sum of rates is achieved when x1 = x2 = c and x3 = 0, which maximizes the sum of utilities if Ui(xi) is
approximately proportional to xi. This is clearly unfair since the two-link flow cannot transmit at all. In contrast, the max-min
rates are x1 = x2 = x3 = c/2, which maximizes the sum of utilities if Ui(xi) rises very sharply for xi < c/2, and rises only
very slightly for xi > c/2. This is completely fair in that all flows receive the same rate, but is unfair in the sense that the long
flow causes twice as much congestion but still achieves the same rate. In this case, the total rate has reduced from c + c = 2c
to c/2 + c/2 + c/2 = 1.5c.

The proportional-fair rates, which maximize logarithmic utilities, are x1 = x2 = 2c/3 and x3 = c/3. These rates are in the
ratio 2:1 because the resources consumed are in the ratio 1:2, and they give a total rate of around 1.67c. If all flows have equal
round trip times, τi, TCP Reno will give average rates in ratio 1 :

√
2, namely x1 = x2 =

√
2c/(1+

√
2) and x3 = c/(1+

√
2),



with a total throughput of 1.59c. The fact that the rates are more similar for Reno than for proportional fairness, but the sum
of rates is lower, supports the statement that Reno is a compromise between proportional fairness and max-min fairness.

In concluding this subsection, we mention that there has been a lot of recent research on both reverse-engineering and
forward-engineering congestion control protocols, based on the above mathematical model and its variants. Some of the
ongoing research issues will be briefly presented towards the end of this entry.

V. TIMING RESTORATION: MANAGING DELAY VARIATION

In most cases, it is desirable for the transport layer to pass data to the receiving application as soon as possible. The notable
exception to this is streaming audio and video. For these applications, the temporal spacing between packets is important; if
audio packets are processed too early, the sound becomes distorted. However, the spacing between packets gets modified when
packets encounter network queueing, which fluctuates in time. In its role of hiding lower layer imperfections from the upper
layers, it is up to the transport layer to re-establish the timing relations between packets before sending them to the application.

Specialist transport protocols such as the Real Time Protocol (RTP) are used by flows requiring such timing information.
RTP operates on top of traditional transport layer protocols such as UDP, and provides each packet with a time-stamp. At the
receiver, packets are inserted as soon as they arrive into a special buffer known as a jitter buffer, or playout buffer. They are
then extracted from the jitter buffer in the order in which they were sent and at intervals exactly equal to the interval between
their timestamps. Jitter buffers can only add delay to packets, not remove delay; if a packet is received with excessive delay,
it must simply be discarded by the jitter buffer. The size of the jitter buffer determines the tradeoff between the delay and
packet loss experienced by the application.

VI. RECENT AND FUTURE EVOLUTION

With the Internet expanding to global scale and becoming ubiquitous, it is encountering more and more new environments. On
the one hand, the TCP/IP “hourglass model”4 has been very successful at separating applications from the underlying physical
networks and enabling the Internet’s rapid growth. On the other hand, some basic assumptions are becoming inaccurate or
totally invalid, which therefore imposes new challenges. This section describes some of the hot issues in both the Internet
Engineering Task Force (IETF, the primary Internet standards body) and the broad research community. Many topics touch
on both implementation issues and fundamental questions. We will start with the most implementation related ones, and then
progress to the more theoretical ones. It is certainly clear that the list below cannot be exhaustive and instead reflects the authors’
taste and expertise. For example, there are many more variants of TCP congestion control proposed in the last few years than
can be surveyed within an encycopedia. In addition to the rest of this section, there are many other exciting developments in
the theory and practice of transport layer design for future networks.

A. Protocol enhancement

1) Datagram Congestion Control Protocol: While TCP provides reliable in-order data transfer and congestion control,
UDP provides neither. However, applications such as video transmission should implement congestion control, but do not need
guaranteed transmission. Moreover, they cannot tolerate the delay caused by retransmission and in-order delivery. Consequently,
the IETF has developed a new protocol called DCCP (Datagram Congestion Control Protocol), which is can be viewed either as
UDP with congestion control, or as TCP without the reliability guarantees. Because many firewalls block unknown protocols,
DCCP has not yet been widely used, although it is implemented in many operating systems.

2) Multiple indicators of congestion: The current TCP NewReno relies primarily on detection of packet loss to determine its
window size. Other proposals have been made which rely primarily on estimates of the queueing delay. The utility maximization
theory described in Section IV-B applies to networks in which all flows are of the same “family”. For example, all flows in the
network may respond solely to loss; different flows may respond differently to loss, provided that loss is the only congestion
signal they use. However, when a single network carries flows from both the “loss” and “delay” families, or flows responding
to other “price” signals such as explicit congestion signals, the standard theory fails to predict how the network behaves.

Unlike networks carrying a single family of algorithms, the equilibrium rates now depend on router parameters, such as
buffer sizes, and flow arrival patterns. The equilibrium can be non-unique, inefficient and unfair. The situation is even more
complicated when some individual flows respond to multiple congestion signals, such as adjusting AIMD parameters based
on estimates of queueing delay. This has motivated recent efforts to construct a more general framework which includes as a
special case the theory for networks using congestion signals from a single family [20].

4It is called an hourglass because a small number of simple network and transport layer protocols connect a large variety of complex application layer
protocols above with a large variety of link and physical layer protocols below.



B. Applications

1) Delay tolerant networks: Sliding window protocols rely on feedback from the receiver to the sender. When communicating
with spacecraft, the delay between sending and receiving may be minutes or hours, rather than milliseconds, and sliding windows
become infeasible. This has lead to research into “interplanetary TCP”. Technology called DTN (Delay Tolerant Networking)
is being developed for this, and also for more mundane situations in which messages suffer long delays. One example is in
vehicular networks, in which messages are exchanged over short-range links as vehicles pass one another, and are physically
carried by the motion of the vehicles around a city. In such networks, reliability must typically be achieved by combinations
of error correcting codes and multipath delivery (e.g., through flooding).

2) Large bandwidth delay product networks: In the late 1990s, it became clear that TCP NewReno had problems in high-
speed transcontinental networks, commonly called “large bandwidth-delay product” or “large BDP” networks. The problem is
especially severe when a large BDP link carries only a few flows, such as those connecting supercomputer clusters. In these
networks, an individual flow must have a window W of many thousands of packets. Because AIMD increases the window by
a single packet per round trip, the sending rate on a trans-Atlantic link will increase by around 100 kbit/s per second. It would
thus take almost three hours for a single connection to start to fully utilize a 1 Gbit/s link.

Many solutions have been proposed, typically involving increasing the rate at which the window is increased, or decreasing
the amount by which it is decreased. However, these both make the algorithm more “aggressive”, which could lead to allocating
too much rate to flows using these solutions and not enough to flows using the existing TCP algorithm. As a result, most
solutions try to detect whether the network actually is a “large BDP” network, and adjust their aggressiveness accordingly.
Another possibility is to avoid dealing with packet loss in large BDP networks. Researchers have developed various congestion
control algorithms that use congestion signals other than packet loss, e.g., queueing delay. Many proposals also seek to combine
timing information with loss detection. This leads to the complications of multiple indicators of congestion described previously.

An alternative which is often proposed is for the routers on the congested links to send explicit messages indicating the
level of congestion. This was an important part of the available bit-rate (ABR) service of asynchronous transport mode (ATM)
networks. It may allow more rapid and precise control of rate allocation, such as the elimination of TCP’s time consuming
slow start phase. However, it presents significant difficulties for incremental deployment in the current Internet.

3) Wireless networks: Wireless links are less ideal than wired links in many ways. Most importantly, they corrupt packets
because of fading and interference, either causing long delays as lower layers try to recover the packets, or causing packets
to be lost. The first of these results in unnecessary timeouts, forcing TCP to undergo slow start, while the latter is mistaken
for congestion and causes TCP NewReno to reduce its window. Again, many solutions have been proposed: some mask the
existence of loss, while others attempt to distinguish wireless loss from congestion loss based on estimates of queueing delay
or explicit congestion indication.

The fundamental task of resource allocation is also more challenging in wireless networks, partly because resources are
more scarce and users may move, but more importantly because of the interaction between nearby wireless links. Because
the capacity of a wireless link depends on the strength of its signal and that of interfering links, it is possible to optimize
resource allocation over multiple layers in the protocol stack. This cross-layer optimization generalizes the utility maximization
of Section IV-B. It provides challenges as well as opportunities to achieve even greater performance, which requires a careful
balance between reducing complexity and seeking optimality.

C. Research challenges

1) Impact of network topology: Transport layer congestion control and rate allocation algorithms are often studied in very
simple settings. Two common test networks are dumbbell networks in which many flows share a single congested link, and
parking lot networks, consisting of several congested links in series with one flow traversing all links, and each link also being
the sole congested link for another short flow. Figure 6 shows a two-link parking lot network. These are used partly because
they occur frequently in the Internet (such as when a flow is bottlenecked at the ingress and egress access links), and partly
because there are intuitive notions of how algorithms “should” behave in these settings. However, these simple topologies
often give a misleading sense of confidence in our intuition. For example, in parking lot topologies, algorithms which give
high rate to the single link flows at the expense of the multi-link flow achieve higher total throughput, and thus it is widely
believed that there is a universal tradeoff between fairness and efficiency. However, there exist networks in which increasing
the fairness actually increases the efficiency [19]. This and other interesting and counter-intuitive phenomena arise only in a
network setting where sources interact through shared links in intricate and surprising ways.

2) Stochastic network dynamics: The number of flows sharing a network is continually changing, as new application sessions
start, and others finish. Furthermore, packet accumulations at each router is shaped by events in all upstream routers and links,
and packet arrivals in each session are shaped by the application layer protocols, including those in emerging multimedia
and content distribution protocols. While it is easy to study the effects of this variation by measuring either real or simulated
networks, it is much harder to capture these effects in theoretical models. Although the deterministic models studied to date



have been very fruitful in providing fundamental understanding of issues such as fairness, there is an increasing interest in
extending the theoretical models to capture the stochastic dynamics occurring in real networks.

As an example of one type of these dynamics, consider a simple case of one long flow using the entire capacity of a given
link, and another short flow which starts up using the same link. If the short flow finishes before the long flow does, then the
finish time of the long flow will be delayed by the size of the short flow divided by the link capacity, independent of the rate
allocated to the short flow, provided that the sum of their rates is always the link capacity. In this case, it would be optimal to
process the flows in “shortest remaining processing time first” (SRPT) order; that is, to allocate all rate to the short flow and
meanwhile totally suspend the long flow. However, as the network does not know in advance that the short flow will finish
first, it will instead seek to allocate rates fairly between the two flows. This can cause the number of simultaneous flows to be
much larger than the minimum possible, resulting in each flow getting a lower average rate than necessary. The fundamental
difficulty is that the optimal strategy is no longer to allocate instantaneous rates fairly based on the existing flows.

VII. FURTHER READING

The transport layer is a main topic in many textbooks on computer networks, which is now a standard course in most
universities. This article only seeks to provide a basic understanding of the transport layer. For those who are interested in
digging into details and working in related areas, the following references are a useful starting point. For a complete introduction
to computer networks including the transport layer, see any of the major networking textbooks such as [9]. The Internet’s main
transport layer protocol, TCP, is described in detail in [18], although several details have evolved since that was written. For a
general mathematical approach to understanding network layering, see a recent survey [2]. Samples of early TCP congestion
control analysis include [10], [13], [15], [16]. A survey on the mathematical treatment of Internet congestion control can be
found in [17]. Enduring issues are also well described in [21].

REFERENCES

[1] L. Brakmo and L. Peterson. TCP Vegas: end-to-end congestion avoidance on a global Internet. IEEE Journal on Selected Areas in Communications,
13(8):1465–80, October 1995.

[2] M. Chiang, S. Low, A. Calderbank and J. Doyle. Layering as optimization decomposition: A mathematical theory of network architectures. Proceedings
of the IEEE, 95(1): 255–312, January 2007.

[3] D. M. Chiu and R. Jain. Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Computer Networks and
ISDN Systems, 17(1):1–14, 1989.

[4] D. Clark, V. Jacobson, J. Romkey and H. Salwen. An Analysis of TCP Processing Overhead. IEEE Communications Magazine, June, 1989.
[5] M. Fomenkov, K. Keys, D. Moore, and K. Claffy. Longitudinal study of Internet traffic in 1998–2003. In WISICT ’04: Proc. Winter Int. Symp. Info.

Commun. Technol., 2004.
[6] V. Jacobson. Congestion Avoidance and Control. In Proc. ACM SIGCOMM, 1988.
[7] F. Kelly, A. Maoulloo, and D. Tan. Rate control for communication networks: shadow prices, proportional fairness and stability. Journal of the

Operational Research Society, 49:237–252,1998.
[8] S. Kunniyur and R. Srikant. End-to-end congestion control schemes: utility functions, random losses and ECN marks. IEEE/ACM Trans. on Networking,

11(5):689–702, October 2003.
[9] J. Kurose and K. Ross. Computer Networking. Fourth edition, Addison Wesley, 2007.

[10] T. Lakshman and U. Madhow. The performance of TCP/IP for networks with high bandwidth?delay products and random loss. IEEE/ACM Trans. on
Networking, 5(3):336–350, June 1997.

[11] S. Low. A duality model of TCP and queue management algorithms. IEEE/ACM Trans. on Networking, 11(4):525–536, August 2003.
[12] S. Low and D. Lapsley. Optimization flow control – I: Basic algorithm and convergence. IEEE/ACM Trans. on Networking, 7(6):861–874, December

1999.
[13] M. Mathis, J. Semke, J. Mahdavi and T. Ott. The macroscopic behavior of the TCP congestion avoidance algorithm. ACM Computer Communication

Review, 27(3):67-82, July 1997.
[14] J. Mo and J. Walrand. Fair end-to-end window-based congestion control. IEEE/ACM Transactions on Networking, 8(5):556-567, October 2000.
[15] J. Padhye, V. Firoiu, D. Towsley and J. Kurose. Modeling TCP throughput: a simple model and its empirical validation. ACM Computer Communication

Review, 28(4):303–314, October 1998.
[16] K. Ramakrishnan and R. Jain. A Binary Feedback Scheme for Congestion Avoidance in Computer Networks with Connectionless Network Layer. In

Proc. ACM SIGCOMM, 1988.
[17] R. Srikant. The Mathematics of Internet Congestion Control. Birkhauser, 2003.
[18] W. R. Stevens. TCP/IP Illustrated, Volume 1, The Protocols. Addison-Wesley, 1994.
[19] A. Tang, J. Wang and S. H. Low. Counter Intuitive Throughput Behaviors in Networks under End-to-end Control. IEEE/ACM Transactions on Networking,

14(2):355–368, June 2006.
[20] A. Tang, J. Wang, S. Low and M. Chiang Equilibrium of Heterogeneous Congestion Control: Existence and Uniqueness. IEEE/ACM Transactions on

Networking, 15(4): 824–837, August 2007.
[21] J. Walrand and P. Varaiya. High Performance Communication Networks. Morgan Kaufmann, 2000.


