
 1

Lab Exercise – TCP

Objective
To see the details of TCP (Transmission Control Protocol). TCP is the main transport layer protocol used

in the Internet.

Step 1: Open the Trace

Open the trace file here: https://kevincurran.org/com320/labs/wireshark/trace-tcp.pcap

Figure 6: Trace file

https://kevincurran.org/com320/labs/wireshark/trace-tcp.pcap

 2

Step 2: Inspect the Trace

Select a long packet anywhere in the middle of your trace whose protocol is listed as TCP. Expand the TCP

protocol section in the middle panel (by using the “+” expander or icon). All packets except the initial

HTTP GET and last packet of the HTTP response should be listed as TCP. Picking a long packet ensures

that we are looking at a download packet from the server to your computer. Looking at the protocol lay-

ers, you should see an IP block before the TCP block. This is because the TCP segment is carried in an IP.

We have shown the TCP block expanded in our figure.

You will see roughly the following fields:

• First comes the source port, then the destination port. This is the addressing that TCP adds be-

yond the IP address. The source port is likely to be 80 since the packet was sent by a web server

and the standard web server port is 80.

• Then there is the sequence number field. It gives the position in the byte stream of the first pay-

load byte.

• Next is the acknowledgement field. It tells the last received position in the reverse byte stream.

• The header length giving the length of the TCP header.

• The flags field has multiple flag bits to indicate the type of TCP segment. You can expand it and

look at the possible flags.

• Next is a checksum, to detect transmission errors.

• There may be an Options field with various options. You can expand this field and explore if you

would like, but we will look at the options in more detail later.

• Finally, there may be a TCP payload, carrying the bytes that are being transported.

As well as the above fields, there may be other informational lines that Wireshark provides to help you

interpret the packet. We have covered only the fields that are carried across the network.

 3

Step 3: TCP Segment Structure

Figure 7: Structure of a TCP segment

This drawing differs from the text drawing in the book in only minor respects:

• The Header length and Flags fields are combined into a 2-byte quantity. It is not easy to deter-

mine their bit lengths with Wireshark.

• The Urgent Pointer field is shown as dotted. This field is typically not used, and so does not show

up in Wireshark and we do not expect you to have it in your drawing. You can notice its exist-

ence in Wireshark, however, by observing the zero bytes in the segment that are skipped over

as you select the different fields.

• The Options field is shown dotted, as it may or may not be present for the segments in your

trace. Most often it will be present, and when it is then its length will be a multiple of four bytes.

• The Payload is optional. It is present for the segment you viewed, but not present on an Ack-

only segment, for example.

• Note, you can work out sizes yourself by clicking on a protocol block in the middle panel (the

block itself, not the “+” expander). Wireshark will highlight the corresponding bytes in the packet

in the lower panel, and display the length at the bottom of the window. You may also use the

overall packet size shown in the Length column or Frame detail block. See below where a TCP

packet of length 66 is highlighted.

Figure 8: Examining the size of segments

 4

Step 4: TCP Connection Setup/Teardown

Three-Way Handshake
To see the “three way handshake” in action, look for a TCP segment with the SYN flag on. These are up at

the beginning of your trace, and the packets that follow it (see below).

Figure 9: Selecting a TCP segment with SYN flag

The SYN flag is noted in the Info column. You can also search for packets with the SYN flag on using the

filter expression “tcp.flags.syn==1”. (See below)

Figure 10: Selecting a TCP segment with SYN flag on

A “SYN packet” is the start of the three-way handshake. In this case it will be sent from your computer

to the remote server. The remote server should reply with a TCP segment with the SYN and ACK flags

set, or a “SYN ACK packet”. On receiving this segment, your computer will ACK it, consider the connec-

tion set up, and begin sending data, which in this case will be the HTTP request.

 5

Step 5: TCP Connection Setup/Teardown

Next, we wish to clear the display filter tcp.flags.syn==1 so that we can once again see all the packets in

our original trace. Do this by clearing the display filter as shown below.

Figure 11: Clearing the display filter TCP segment with SYN flag on

If you do this correctly, you should see the full trace. We are most interested in the first three packets.

Figure 12: Viewing the complete trace

 6

Below is a time sequence diagram of the three-way handshake in your trace, up to and including the first

data packet (the HTTP GET request) sent by ‘your computer’ when the connection is established. As

usual, time runs down the page, and lines across the page indicate segments.

Figure 13: Time sequence diagram for the TCP three-way handshake

There are several features to note:

• The initial SYN has no ACK number, only a sequence number. All subsequent packets have ACK

numbers.

• The initial sequence numbers are shown as zero in each direction. This is because our Wireshark

is configured to show relative sequence numbers. The actual sequence number is some large 32-

bit number, and it is different for each end.

• The ACK number is the corresponding sequence number plus 1.

• Our computer sends the third part of the handshake (the ACK) and then sends data right away in

a different packet. It would be possible to combine these packets, but they are typically sepa-

rate (because one is triggered by the OS and one by the application).

• For the Data segment, the sequence number and ACK stay with the previous values. The se-

quence number will advance as the sender sends more data. The ACK number will advance as

the sender receives more data from the remote server.

• The three packets received and sent around 88ms happen very close together compared to the

gap between the first and second packet. This is because they are local operations; there is no

network delay involved.

• The RTT is 88ms in our trace. If you use a local web server, the RTT will be very small, likely a few

milliseconds. If you use a major web server that may be provided by a content distribution net-

work, the RTT will likely be tens of milliseconds. If you use a geographically remote server, the

RTT will likely be hundreds of milliseconds.

 7

Step 5: Connection Options

As well as setting up a connection, the TCP SYN packets negotiate parameters between the two ends

using Options. Each end describes its capabilities, if any, to the other end by including the appropriate

Options on its SYN. Often both ends must support the behavior for it to be used during data transfer.

Common Options include Maximum Segment Size (MSS) to tell the other side the largest segment that

can be received, and Timestamps to include information on segments for estimating the round trip time.

There are also Options such as NOP (No-operation) and End of Option list that serve to format the Op-

tions but do not advertise capabilities. You do not need to include these formatting options in your an-

swer above. Options can also be carried on regular segments after the connection is set up when they

play a role in data transfer. This depends on the Option. For example: the MSS option is not carried on

each packet because it does not convey new information; timestamps may be included on each packet

to keep a fresh estimate of the RTT; and options such as SACK (Selective Acknowledgments) are used

only when data is received out of order.

Our TCP Options are Maximum Segment Size, Window Scale, SACK permitted, and Timestamps. Each of

these Options is used in both directions. There are also the NOP & End of Option List formatting options.

Here is an example of a FIN teardown:

Figure 14: Time sequence diagram for FIN teardown

Points to note:

• The teardown is initiated by the computer; it might also be initiated by the server.

• Like the SYN, the FIN flag occupies one sequence number. Thus, when the sequence number of

the FIN is 192, the corresponding Ack number is 193.

• Your sequence numbers will vary. Our numbers are relative (as computed by Wireshark) but

clearly depend on the resource that is fetched. You can tell that it is around 1 MB long.

• The RTT in the FIN exchange is like that in the SYN exchange, as it should be. Your RTT will vary

depending on the distance between the computer and server as before.

 8

Step 6: FIN/RST Teardown

Finally, the TCP connection is taken down after the download is complete. This is typically done with FIN

(Finalize) segments. Each side sends a FIN to the other and acknowledges the FIN they receive; it is simi-

lar to the three-way handshake. Alternatively, the connection may be torn down abruptly when one end

sends a RST (Reset). This packet does not need to be acknowledged by the other side.

Below is a picture of the teardown in your trace, starting from when the first FIN or RST is issued until

the connection is complete. It shows the sequence and ACK numbers on each segment.

Figure 15: Time sequence diagram for RST teardown

Points to note:

• The teardown is initiated by the computer; it might also be initiated by the server.

• The teardown is abrupt – a single RST in this case, and then it is closed, which the other end

must accommodate.

• The sequence and Ack numbers do not really matter here. They are simply the (relative

Wireshark) values at the end of the connection.

• Since there is no round trip exchange, no RTT can be estimated.

 9

Step 7: TCP Data Transfer

For this part, we are going to launch an older version of Wireshark called Wireshark legacy. You do this

by selecting the Wireshark legacy application as follows.

When it launches, you should open the trace-tcp file which is in your downloads folder from earlier.

 10

You should then be presented with the same trace-tcp as used previously in this exercise.

The middle portion of the TCP connection is the data transfer, or download, in our trace. This is the main

event. To get an overall sense of it, we will first look at the download rate over time.

Under the Statistics menu select an “IO Graph” (as shown below).

Figure 16: Opening an IO graph

You should end up with a graph like below. By default, this graph shows the rate of packets over time.

You might be tempted to use the “TCP Stream Graph” tools under the Statistics menu instead. However,

these tools are not useful for our case because they assume the trace is taken near the computer send-

ing the data; our trace is taken near the computer receiving the data.

Figure 17: The IO graph

 11

Now we will tweak it to show the download rate with the changes given below

• On the x-axis, adjust the tick interval and pixels per tick. The tick interval should be small enough

to see into the behavior over the trace, and not so small that there is no averaging. 0.1 seconds

is a good choice for a several second trace. The pixels per tick can be adjusted to make the

graph wider or narrower to fill the window. Make this 10. See below.

• On the y-axis, change the unit to be Bits/Tick. The default is Packet/Tick. By changing it, we can

easily work out the bits/sec throughput by taking the y-axis value and scaling as appropriate,

e.g., 10X for ticks of 0.1 seconds.

• Add a filter expression to see only the download packets. So far we are looking at all of the pack-

ets. Assuming the download is from the usual web server port of 80, you can filter for it with a

filter of “tcp.srcport==80”. Don’t forget to press Enter, and you may need to click the

“Graph” button to cause it to redisplay.

• To see the corresponding graph for the upload traffic, enter a second filter in the next box. Again

assuming the usual web server port, the filter is “tcp.dstport==80”. After you press Enter

and click the Graph button, you should have two lines on the graph.

Our graph for this procedure is shown in the figure on next page. From it we can see the sample down-

load rate quickly increase from zero to a steady rate, with a bit of an exponential curve. This is slow-

start. The download rate when the connection is running is approximately 2.5 Mbps. The upload rate is a

steady, small trickle of ACK traffic. Our download also proceeds fairly steadily until it is done. This is the

ideal, but many downloads may display more variable behavior if, for example, the available bandwidth

varies due to competing downloads, the download rate is set by the server rather than the network, or

enough packets are lost to disrupt the transfer.

Note, you can click on the graph to be taken to the nearest point in the trace if there is a feature you

would like to investigate.

Try clicking on parts of the graph and watch where you are taken in the Wireshark trace window.

 12

Figure 16: TCP download rate over time via an IO graph

Inspect the packets in the download in the middle of your trace for these features:

• You should see a pattern of TCP segments received carrying data and ACKs sent back to the

server. Typically, there will be one ACK every couple of packets. These ACKs are called Delayed

ACKs. By delaying for a short while, the number of ACKs is halved.

• Since this is a download, the sequence number of received segments will increase; the ACK

number of subsequently transmitted segments will increase correspondingly.

• Since this is a download, the sequence number of transmitted segments will not increase (after

the initial get). Thus the ACK number on received segments will not increase either.

• Each segment carries Window information to tell the other end how much space remains in the

buffer. The Window must be greater than zero, or the connection will be stalled by flow control.

Note the data rate in the download direction in packets/second and bits/second once the TCP connec-

tion is running well is 250 packet/sec and 2.5 Mbps.

Our download packets are 1434 bytes long, of which 1368 bytes are the TCP payload carrying contents.

Thus 95% of the download is content.

The data rate in the upload direction in packets/second and bits/second due to the ACK packets is 120

packets/sec and 60,000 bits/sec. We expect the ACK packet rate to be around half of the data packet

rate for the typical pattern of one delayed ACK per two data packets received. The ACK bit rate will be

at least an order of magnitude below the data bit rate as the packets are much smaller, around 60 bytes.

The Ack number tells the next expected sequence number therefore it will be X plus the number of TCP

payload bytes in the data segment.

