Lab Exercise — TCP

Objective e
To see the details of TCP (Transmission Control Protocol). TCP is the main transport layer protocol used
in the Internet.

Step 1: Open the Trace

Open the trace file here: https://kevincurran.org/com320/labs/wireshark/trace-tcp.pcap

I trace-tcp.peap - [m| x

d File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

‘AW 4@ RE Qes=T oz Eaqaan
‘[i |App|'-r' a display filter ... <Ctrl-/= = '] Expression... = +
Tl No. Time Source Destination Protocol Length Info ~
; - 1 b.oe0oee 192.168.1.122 64.238.147.113 TCP 78 68643 =+ 88 [SYN] Seq=8 Win=65535 Len=0 MS5=146@ WS=8 ..
| 2 B.088016 64.238.147.113 192.168.1.122 TCP 74 88 + B@643 [SYN, ACK] Seq=@ Ack=1 Win=5792 Len=8 MS5=..
i 3 B.pEB0ER 192.168.1.122 64.238.147.113 TCP 66 68643 > 88 [ACK] Seq=1 Ack=1 Win=524280 Len=0 TSval=2..
4 @.888579 192.168.1.122 64.238.147.113 HTTP 257 GET /sigcomm/2@11/papers/sigcomm/p2.pdf HTTP/1.1
5 8.177819 64.238.147.113 192.168.1.122 TCP 66 88 + 6@643 [ACK] Seq=1 Ack=192 Win=6864 Len=0 TSval=4..
6 B8.178321 64.238.147.113 192.168.1.122 TCP 311 [TCP segment of a reassembled PDU]
7 ©8.178388 192.168.1.122 64.238.147.113 TCP 66 68643 =+ 88 [ACK] Seq=192 Ack=246 Win=524288 Len=8 TSv..
8 8.189114 64.238.147.113 192.168.1.122 TCP 1434 [TCP segment of a reassembled PDU]
9 8.266785 64.238.147.113 192.168.1.122 TCP 1434 [TCP segment of a reassembled PDU]
16 8.266787 192.168.1.122 64.238.147.113 TCP 66 68643 =+ 88 [ACK] Seq=192 Ack=2982 Win=523944 Len=@ TS..
11 8.267657 64.238.147.113 192.168.1.122 TCP 1434 [TCP segment of a reassembled PDU]
12 @.354612 64.238.147.113 192.168.1.122 TCP 1434 [TCP segment of a reassembled PDU]
| 13 @.354647 192.168.1.122 64.238.147.113 TCP 66 6B643 =+ 88 [ACK] Seq=192 Ack=5718 Win=523944 Len=@ TS..
L 14 @.355174 64.238.147.113 192.168.1.122 TCP 1434 [TCP segment of a reassembled PDU]
¥ 15 @.355561 64.238.147.113 192.168.1.122 TCP 1434 [TCP segment of a reassembled PDU]
¥ 16 @.355579 192.168.1.122 64.238.147.113 TCP 66 68643 =+ 88 [ACK] Seq=192 Ack=8454 Win=523944 Len=8 TS..
* 17 @.448719 64.238.147.113 192.168.1.122 TCP 1434 [TCP segment of a reassembled PDU]
g 18 @.441973 64.238.147.113 192.168.1.122 TCP 1434 [TCP segment of a reassembled PDU] v
3 10 & AAIRAD 107 162 1 122 fA_238 14T 1132 TrD A GAGAZ o 2@ TACK] San—107 Ack-111068 Lin-523044 lan—@ T
3| » Frame 1: 78 bytes on wire (624 bits), 78 bytes captured (624 bits)
3| » Ethernet II, Src: Apple_ac:6c:26 (1@:9a:dd:ac:6c:26), Dst: Cisco-Li e3:e9:8d (@0:16:b6:e3:e9:8d)
3l » Internet Protocol Version 4, Src: 192.168.1.122, Dst: 64.238.147.113
“ " Transmission Control Protocol, Src Port: 68643, Dst Port: 88, Seq: @, Len: @
a
3 Goee 8@ 16 b6 e3 e9 8d 18 9a dd ac 6c 26 B3 88 45 BB L1180 LE.
-| 0ole @@ 4@ 9f 5a 40 00 40 @6 @4 ac c@ ad @1 Ta 4@ ee L@ @@ e z(d.
‘CCZC 93 71 ec e3 8@ 58 9f dc 42 9d 9@ @0 @2 @0 be ez - P N <

Figure 6: Trace file

https://kevincurran.org/com320/labs/wireshark/trace-tcp.pcap

Step 2: Inspect the Trace

Select a long packet anywhere in the middle of your trace whose protocol is listed as TCP. Expand the TCP
protocol section in the middle panel (by using the “+” expander or icon). All packets except the initial
HTTP GET and last packet of the HTTP response should be listed as TCP. Picking a long packet ensures
that we are looking at a download packet from the server to your computer. Looking at the protocol lay-
ers, you should see an IP block before the TCP block. This is because the TCP segment is carried in an IP.
We have shown the TCP block expanded in our figure.

You will see roughly the following fields:

First comes the source port, then the destination port. This is the addressing that TCP adds be-
yond the IP address. The source port is likely to be 80 since the packet was sent by a web server
and the standard web server port is 80.

Then there is the sequence number field. It gives the position in the byte stream of the first pay-
load byte.

Next is the acknowledgement field. It tells the last received position in the reverse byte stream.
The header length giving the length of the TCP header.

The flags field has multiple flag bits to indicate the type of TCP segment. You can expand it and
look at the possible flags.

Next is a checksum, to detect transmission errors.

There may be an Options field with various options. You can expand this field and explore if you
would like, but we will look at the options in more detail later.

Finally, there may be a TCP payload, carrying the bytes that are being transported.

As well as the above fields, there may be other informational lines that Wireshark provides to help you
interpret the packet. We have covered only the fields that are carried across the network.

Step 3: TCP Segment Structure

Start of segment

Source | Dest. | Sequence Header Check [Window |; Urgent y ~ ="~ ;
port

4 Options ! Payload

Ack b Fl i
ck number ags L pointer §_-C :

port number length sum si

2 bytes 2 bytes 4 bytes 4 bytes 2 bytes 2 bytes 2 bytes 2 bytes variable N bytes

TCP header TCP payload

Figure 7: Structure of a TCP segment

This drawing differs from the text drawing in the book in only minor respects:

The Header length and Flags fields are combined into a 2-byte quantity. It is not easy to deter-
mine their bit lengths with Wireshark.

The Urgent Pointer field is shown as dotted. This field is typically not used, and so does not show
up in Wireshark and we do not expect you to have it in your drawing. You can notice its exist-
ence in Wireshark, however, by observing the zero bytes in the segment that are skipped over
as you select the different fields.

The Options field is shown dotted, as it may or may not be present for the segments in your
trace. Most often it will be present, and when it is then its length will be a multiple of four bytes.

The Payload is optional. It is present for the segment you viewed, but not present on an Ack-
only segment, for example.

Note, you can work out sizes yourself by clicking on a protocol block in the middle panel (the
block itself, not the “+” expander). Wireshark will highlight the corresponding bytes in the packet
in the lower panel, and display the length at the bottom of the window. You may also use the
overall packet size shown in the Length column or Frame detail block. See below where a TCP
packet of length 66 is highlighted.

M trace-top.pcap

- =] <
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
P @ RE }R=s=F L S [=Eaa afF
(W [Apply = dizpiny Alter . <cwlr =3 <) Expression. | + |
'
o, Time source Desunation Protocol Length Info -~ i
7 @.178388 192.168.1.122 64.238.147.113 Tcr 66 60643 - 30 [ACK] Seq-192 Ack-246 Win-524286 Len-8 TSv..
s @.189114 64.238.147.113 192.168.1.122 Tcr 1434 [TCP segment of a reassembled PDU]
5 @.266705 64.2385.147.113 152.168.1.122 Tcr 1434 [TCP segment of a reassembled PDU]
18 @.266757 192.168.1.122 64.238.147.113 Tcr 66 60643 » 30 [ACK] Seq-192 Ack=2982 Win=523944 Len=8 TS..
11 @.267657 54.235.147.113 192.168.1.122 Tce 1434 [TCP segment of a reassembled PDU]
12 @.354612 54.235.147.113 182.168.1.122 Tce 1434 [TCP segment of a reassembled PDU]
13 @.354647 192.165.1.122 64.235.147.113 Tce 66 60643 » 80 [ACK] Seq=192 Ack=5718 Win=523944 Len=0 Ts..
14 ®.355174 64.238.147.113 192.168.1.122 TCP 1434 [TCP segment of a reassembled PDU] !
15 @.355561 54.235.147.113 192.168.1.122 Tce 1434 [TCP semment of a reassembled PDU] ~ |

Frame 10: 66 bytes on wire (528 bits), 56 bytes captured (528 bits)
Ethernet II, Src: Apple_ac:6c:26 (1@:9a:dd:ac:6c:26), Dst: Cisco-Li_e3:ev:8d (@0:16:bs:e3:es:sd)
Internet Protocol version 4, Src: 192.168.1.122, DSt: 64.238.147.113 b
~ Transmission cControl Protocol, Src POrt: 60643, DSt POrt: @, Seq: 192, Ack: 2982, Len: @
Source Port: 68643 F
Destination Port: 80 i
[Stream index: @] 5

[TCP Seement Len: o1 >
@0 16 b6 c3 o 8d 16 9 dd ac 6c 26 08 00 45 60 1a. € k
@8 34 76 =5 40 @0 48 @6 2d Sd €O a8 ©1 7a 40 ee .Av.@.@. -]...z@.]
93 71 ec e3 @@ 56 9Ff dc 43 5d 14 d4 ce 46 88 18 .q...P.. Cl...F..
FFf dS of 47 G0 @6 01 @1 OB On @Ff 4c a@ 79 of 6c a Loy.d
e= B2 -b t
r
@ ¥ stream index (tcp.stream) Packets: 11732 - Displayed: 1172 (100.0%) - Leoad time: 0:0.22 || Profile: Default

Figure 8: Examining the size of segments

Step 4: TCP Connection Setup/Teardown

Three-Way Handshake
To see the “three way handshake” in action, look for a TCP segment with the SYN flag on. These are up at
the beginning of your trace, and the packets that follow it (see below).

M trace-tcp.peap — O *
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Amae RE Qe 83| aqaH
|ﬂ |F—\ppl'-,' a display filter ... <Ctrl-/= = | '] Expression... +
MNo. Time Source Destination Protocol Length Info &~
1 @.eee000 192.168.1.122 64.238.147.113 TCP 78 68643 =+ 88 [SYN] Seq=8 Win=65535 Len=8 M55=146@ WS=3 ..
2 B.888018 64.238.147.113 192.168.1.122 TER 74 8@ - 68643 [SYN, ACK] Seq=@ Ack=1 Win=5792 Len=@ M55=..
3 @.ec8e80 192.168.1.122 64.238.147.113 TCP 66 68643 + 80 [ACK] Seq=1 Ack=1 Win=524280 Len=8 TSval=2..
4 @.883579 192.168.1.122 64.238.147.113 HTTP 257 GET /sigcomm/2811/papers/sigcomm/p2.pdf HTTP/1.1
5 8.177819 64.238.147.113 192.168.1.122 TEE 66 88 -+ 68643 TACK] Sea=1 Ack=192 Win=6864 Len=8 TSval=4..

Figure 9: Selecting a TCP segment with SYN flag

The SYN flag is noted in the Info column. You can also search for packets with the SYN flag on using the
filter expression “tcp.flags.syn==1". (See below)

trace-tep.pea -
l ppcap 0o X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

L RE Qe»Z2F 45 ZRQAQH

1

|ﬂ‘tq:|.ﬂags.syn==1 [z '} Expression... +
M. Time Source Destination Protocol Length Info

10.000000 192.168.1.122 64.238.147.113 Tt 78 68643 + 80 [SYN] Seq=h Win=55535 Len=d MSS=1460 W5=3 TSval=2.
(2 0.@35010 64,238.147.113 192.168.1.122 TCP 74 88 + GB643 [SYN, ACK] Seq=B Ack=1 Win=5792 Len=B M55=1330 SA.

Figure 10: Selecting a TCP segment with SYN flag on

A “SYN packet” is the start of the three-way handshake. In this case it will be sent from your computer
to the remote server. The remote server should reply with a TCP segment with the SYN and ACK flags
set, or a “SYN ACK packet”. On receiving this segment, your computer will ACK it, consider the connec-
tion set up, and begin sending data, which in this case will be the HTTP request.

Step 5: TCP Connection Setup/Teardown

Next, we wish to clear the display filter tcp.flags.syn==1 so that we can once again see all the packets in
our original trace. Do this by clearing the display filter as shown below.

M trace-tcp.peap - [m| X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

. P - = (= Click here to clear tcp.flags.syn==1 filter
Am 1@ RBE Qe=>=Fs=Eaaan
[Ttep. flags syn==1 L B -]ewpression.. +
No. Time 1$:E§L urce Destination Protocol Length Info
s 1 8.088 2.168.1.122 64.238.147.113 TCP 78 68643 » 88 [SYN] Seq=0 Win=65535 Len=8 M55=1468 WS=8 TSval=25..
r 2 B.@s8ele 64.235.147.113 192.168.1.122 TCP 74 88 » 68643 [SYN, ACK] Seq=8 Ack=1 Win=5792 Len=@ M55=1388 SAC..

Figure 11: Clearing the display filter TCP segment with SYN flag on

If you do this correctly, you should see the full trace. We are most interested in the first three packets.

i M trace-tcp.peap — [m| *
| File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Am 2@ RE Qe>=FssEHaaan
|I |Fpp|-,' a display filter ... <Ctrl/= '} Expression... +
Mo. Time Source Destination Protocol Length Info ~
2 1 8.866000 192.168.1.122 64.238.147.113 TCP 78 60643 + 88 [SYN] Seq=@ Win=65535 Len=0 MS5-1468 WS=8 T..
2 B.BEER1L 64.238.147.113 192.168.1.122 TCP 74 80 - 68643 [SYN, ACK] Seq=@ Ack=1 Win=5792 Len=8 MS5=L..
3 B.088080 192.168.1.122 64.238.147.113 e 66 6@643 + B8 [ACK] Seg=1 Ack=1 Win=524288 Len=8 TSval=25..
4 8.888579 192.168.1.122 64.238.147.113 HTTP 257 GET /sigcomm/2011/papers/sigcomm/p2.pdf HTTP/1.1
5 8.177819 64.238.147.113 192.168.1.122 e 66 88 -+ 60643 [ACK] Seg=1 Ack=192 Win=6864 Len=8 TSval=48..
6 B8.178321 64.238.147.113 192.168.1.122 e 311 [TCP segment of a reassembled PDU]
7 B8.178388 192.168.1.122 64.238.147.113 TCP 66 BBE43 + 88 [ACK] Seq=192 Ack=246 Win=524288 Len=@ TSva..
2 & 126114 &4 232 147 112 109 182 1 1929 Tro 1424 [TrD camman + nf 2 reaccam hlad Drarl

Figure 12: Viewing the complete trace

Below is a time sequence diagram of the three-way handshake in your trace, up to and including the first
data packet (the HTTP GET request) sent by ‘your computer’ when the connection is established. As
usual, time runs down the page, and lines across the page indicate segments.

Your computer Remote server
0 ms SYN, Seqg=0
RTT SYN, Seq=0, ACK=1
88 ms | Seq=1, ACK=1

Time

Data, Seq=1, ACK=1

Figure 13: Time sequence diagram for the TCP three-way handshake

There are several features to note:

The initial SYN has no ACK number, only a sequence number. All subsequent packets have ACK
numbers.

The initial sequence numbers are shown as zero in each direction. This is because our Wireshark
is configured to show relative sequence numbers. The actual sequence number is some large 32-
bit number, and it is different for each end.

The ACK number is the corresponding sequence number plus 1.

Our computer sends the third part of the handshake (the ACK) and then sends data right away in
a different packet. It would be possible to combine these packets, but they are typically sepa-
rate (because one is triggered by the OS and one by the application).

For the Data segment, the sequence number and ACK stay with the previous values. The se-
guence number will advance as the sender sends more data. The ACK number will advance as
the sender receives more data from the remote server.

The three packets received and sent around 88ms happen very close together compared to the
gap between the first and second packet. This is because they are local operations; there is no
network delay involved.

The RTT is 88ms in our trace. If you use a local web server, the RTT will be very small, likely a few
milliseconds. If you use a major web server that may be provided by a content distribution net-
work, the RTT will likely be tens of milliseconds. If you use a geographically remote server, the
RTT will likely be hundreds of milliseconds.

Step 5: Connection Options

As well as setting up a connection, the TCP SYN packets negotiate parameters between the two ends
using Options. Each end describes its capabilities, if any, to the other end by including the appropriate
Options on its SYN. Often both ends must support the behavior for it to be used during data transfer.

Common Options include Maximum Segment Size (MSS) to tell the other side the largest segment that
can be received, and Timestamps to include information on segments for estimating the round trip time.
There are also Options such as NOP (No-operation) and End of Option list that serve to format the Op-
tions but do not advertise capabilities. You do not need to include these formatting options in your an-
swer above. Options can also be carried on regular segments after the connection is set up when they
play a role in data transfer. This depends on the Option. For example: the MSS option is not carried on
each packet because it does not convey new information; timestamps may be included on each packet
to keep a fresh estimate of the RTT; and options such as SACK (Selective Acknowledgments) are used
only when data is received out of order.

Our TCP Options are Maximum Segment Size, Window Scale, SACK permitted, and Timestamps. Each of
these Options is used in both directions. There are also the NOP & End of Option List formatting options.

Here is an example of a FIN teardown:

Your computer Remote server

= FIN, Seq=192, Ack=1056771

RTT=87ms 1 FIN, Seq=1056771, ACK=193

Seq=193, ACK=1056772
Time

Figure 14: Time sequence diagram for FIN teardown
Points to note:
e The teardown is initiated by the computer; it might also be initiated by the server.

o Like the SYN, the FIN flag occupies one sequence number. Thus, when the sequence number of
the FIN is 192, the corresponding Ack number is 193.

e Your sequence numbers will vary. Our numbers are relative (as computed by Wireshark) but
clearly depend on the resource that is fetched. You can tell that it is around 1 MB long.

e The RTT in the FIN exchange is like that in the SYN exchange, as it should be. Your RTT will vary
depending on the distance between the computer and server as before.

Step 6: FIN/RST Teardown

Finally, the TCP connection is taken down after the download is complete. This is typically done with FIN
(Finalize) segments. Each side sends a FIN to the other and acknowledges the FIN they receive; it is simi-
lar to the three-way handshake. Alternatively, the connection may be torn down abruptly when one end
sends a RST (Reset). This packet does not need to be acknowledged by the other side.

Below is a picture of the teardown in your trace, starting from when the first FIN or RST is issued until
the connection is complete. It shows the sequence and ACK numbers on each segment.

Your computer Remote server

RST, Seq=146, Ack=1056827

Time

Figure 15: Time sequence diagram for RST teardown

Points to note:

e The teardown is initiated by the computer; it might also be initiated by the server.

e The teardown is abrupt — a single RST in this case, and then it is closed, which the other end
must accommodate.

e The sequence and Ack numbers do not really matter here. They are simply the (relative
Wireshark) values at the end of the connection.

e Since there is no round trip exchange, no RTT can be estimated.

Step 7: TCP Data Transfer

For this part, we are going to launch an older version of Wireshark called Wireshark legacy. You do this
by selecting the Wireshark legacy application as follows.

M [i&:) Filters .~
Best match
Wireshark

Desktop app
Apps
" Wireshark Legacy ——select this version
Search suggestions
O wires - see web results p

Folders (15+)

A2 Wireshark Legacy‘ i

When it launches, you should open the trace-tcp file which is in your downloads folder from earlier.

L cptwe 0 Files ___________J _____ onl

Interface List = Open & Website
e Live it of the capture interfaces Open a previously captured file Visit the project’s websit
{coumts incoming packets)
Start Open Recent: @ User's Guide
‘ a C\Users\se10042310\Downloads'trace-arp (2).pcap (3896 bytes) The User's Guide [oniin
Choose one or more interfaces to capture from, then Stark
C\Users\=e10042310\Downloads'trace-arp.pcap (3896 bytes)
£ VMware Network Adapter VMnet8 - s Sactrity
E VMware Netwark Adapter VMnet] M Wireshark: Open Capture File X L
ok [s Jessm
@ Capture Options * Name Date Type Size Te ™
Start = capture with detsiled options . COMS535 from Emmet 22/09/2017 15.. File folder
BrrEzereEs Basic 11/07/2017 16... File folder
. dpg-master 06/07/2017 14... File folder
EC-Council Courses 28/04/2017 15... File folder
Desktop I% trace-tep (1) 19/02/201812... Wireshark ... 1,127 KB
. I trace-tcp 19/02/201812... Wireshark ... 1,127 KB
m csmacd 15/02/201817... Shockwav... 661 KB
Libraries || Unconfirmed 222379.c... 15/02/2018 17... CRDOWM... 746 KB
- |] Unconfirmed 830443.c... 15/02/2018 17... CRDOWN.., 341 KB
Lg commtwocomp (1) 15/02/2018 17... Shockwav... 241 KB
Capture Help This PC commtwocomp 15/02/2018 17.. Shockwav... KB,
. < >
How to Capture Lé
- File name tracetcp ~ | I QOpen
Step by step to & successful capture sEtUp MNetwork

You should then be presented with the same trace-tcp as used previously in this exercise.

M trace-tcp.pcap [Wireshark 2.2.6 (v2.2.6-0-g32dacta)] — m] *

File Edit View Go Capture Analyze Statistics TEIephnnI Tools Internals Help

Co4dE i BEXE ResTL|IEE QB @$EBX O

Filter: ~ | Expression... Clear Apply Save

Mo, Time Source Destination Protocol Length Info
1 0.000000 192.168.1.122 64.238.147.113 78 60643 - BO Seq=0 Win=65535 Len=0 M55=1460 wWs=8 TSva }
2 0.088010 64.238.147.113 192.168.1.122 TCP 74 80 - 60643 [SYN, ACK] Seq=0 Ack=1 win=5792 Len=0 MSS=1380 SACK_PERM=
3 0.088080 192.168.1.122 64.238.147.113 TCP 66 60643 - BO [ACK] Seq=1 Ack=1 Win=524280 Len=0 TSval=256679881 TSecr=
4 0.088579 192.168.1.122 64.238.147.113 HTTP 257 GET /sigcomm/2011/papers/sigcomm/p2.pdf HTTP/1.1
50.177819 64.238.147.113 192.168.1.122 TCP 66 80 - 60643 [ACK] Seq=l Ack=192 wWin=6864 Len=0 TSval=4016893527 TSecr
6 0.178321 64.238.147.113 192.168.1.122 TCP 311 [TcP segment of a reassembled PDU]
7 0.178388 192.168.1.122 64.238.147.113 TCP 66 60643 - B0 [ACK] Seq=192 Ack=246 win=524280 Len=0 Tsval=256679970 TS
8 0.189114 64.238.147.113 192.168.1.122 TCP 1434 [TcP segment of a reassembled pDU]

The middle portion of the TCP connection is the data transfer, or download, in our trace. This is the main
event. To get an overall sense of it, we will first look at the download rate over time.

Under the Statistics menu select an “I10 Graph” (as shown below).

‘ trace-tcp.pcap [Wireshark 2.2.6 (v2.2.6-0-g32dacka)]

File Edit Miew Go Capture Analyze @ Statistics Telephnnz Tools Internals

e @ 4 g | B 5 8 & @ summary

Comments Summary
Filter: Show address resclution
Mo, Time Source Protocol Hierarchy

1 0.000000 192.168. 1. 121 NN

2 0.088010 64.238.147.11)

3 0.088080 192.168.1.121 & Endpoints

4 0.088579 192.168.1.12: Packet Lengths...
50.177819 64.238.147.11 Ly 10 Graph

6 0.178321 64.238.147.11

Figure 16: Opening an 10 graph

You should end up with a graph like below. By default, this graph shows the rate of packets over time.
You might be tempted to use the “TCP Stream Graph” tools under the Statistics menu instead. However,
these tools are not useful for our case because they assume the trace is taken near the computer send-
ing the data; our trace is taken near the computer receiving the data.

M wireshark 1O Graphs: trace-tcp.pcap —] >
— 500
250
T o
Os
|- Graphs K Aixis:
|| Graph 1| Celor | Filter: Style: | Line -~ Smooth | | Tick intervali 1 sec —
Graph 2 | Color | Filter: Style: |Line ~ Smooth | | PRels per tick: 5 =
[] View as time of day
Graph 3| Coior | Filter Style: |Line - Smooth
W s
§| Srapn 2| cotor | Fitter Style: |Line - smooth | | i Packete/Tick &
Graph 5 | Color | Filter: Style: |Line - Smooth || Scale: Auto ~—
Smooth: | MNe filter ~

Figure 17: The 10 graph

10

Now we will tweak it to show the download rate with the changes given below

On the x-axis, adjust the tick interval and pixels per tick. The tick interval should be small enough
to see into the behavior over the trace, and not so small that there is no averaging. 0.1 seconds
is a good choice for a several second trace. The pixels per tick can be adjusted to make the
graph wider or narrower to fill the window. Make this 10. See below.

¥ s
Tick interval 0.1 sec e
Pixels per tick: 10 |~

L] View as time of day

On the y-axis, change the unit to be Bits/Tick. The default is Packet/Tick. By changing it, we can
easily work out the bits/sec throughput by taking the y-axis value and scaling as appropriate,
e.g., 10X for ticks of 0.1 seconds.

Y Asis

Unit: Bits/Tick w
Scale: Auto e
Smooth: | Mo filter w

Add a filter expression to see only the download packets. So far we are looking at all of the pack-
ets. Assuming the download is from the usual web server port of 80, you can filter for it with a
filter of “tcp.srcport==80". Don’t forget to press Enter, and you may need to click the
“Graph” button to cause it to redisplay.

To see the corresponding graph for the upload traffic, enter a second filter in the next box. Again
assuming the usual web server port, the filter is “tcp.dstport==80". After you press Enter
and click the Graph button, you should have two lines on the graph.

Our graph for this procedure is shown in the figure on next page. From it we can see the sample down-
load rate quickly increase from zero to a steady rate, with a bit of an exponential curve. This is slow-
start. The download rate when the connection is running is approximately 2.5 Mbps. The upload rate is a
steady, small trickle of ACK traffic. Our download also proceeds fairly steadily until it is done. This is the
ideal, but many downloads may display more variable behavior if, for example, the available bandwidth
varies due to competing downloads, the download rate is set by the server rather than the network, or
enough packets are lost to disrupt the transfer.

Note, you can click on the graph to be taken to the nearest point in the trace if there is a feature you
would like to investigate.

Try clicking on parts of the graph and watch where you are taken in the Wireshark trace window.

11

Figure 16: TCP download rate over time via an 10 graph

Inspect the packets in the download in the middle of your trace for these features:

M Wireshark |0 Graphs: trace-tcp.peap - O x
— 300000
— 250000
|||||||||||||||||||||||||||||||IIII|IIII|I-I D
0.0s 1.0s 2.0 3.0s 4.0s
Graphs X Axis
Graph 1| Color | Filter: | | tcp.sreport==80 Style: |Line Smooth | | Tick interval: 0.1 sec b
Graph 2 | Color | Filker: | | tcp.dstport==380 Style: |Line Smooth Pixels per tick: 10 v
[View as time of day 7]
Graph 3 Filter: Style: |Line Smooth -
¥ Axis
Graph 4| Color | Filter: Style: |Line Smooth ||| Bits/Tick -
Graph 5 Filter: Style: | Line Smooth || Scale: Auto ~
Smooth: | Mo filter w
Help Copy Save Cloze F

e You should see a pattern of TCP segments received carrying data and ACKs sent back to the
server. Typically, there will be one ACK every couple of packets. These ACKs are called Delayed
ACKs. By delaying for a short while, the number of ACKs is halved.

e Since this is a download, the sequence number of received segments will increase; the ACK
number of subsequently transmitted segments will increase correspondingly.

e Since this is a download, the sequence number of transmitted segments will not increase (after
the initial get). Thus the ACK number on received segments will not increase either.

e Each segment carries Window information to tell the other end how much space remains in the
buffer. The Window must be greater than zero, or the connection will be stalled by flow control.

Note the data rate in the download direction in packets/second and bits/second once the TCP connec-

tion is running well is 250 packet/sec and 2.5 Mbps.

Our download packets are 1434 bytes long, of which 1368 bytes are the TCP payload carrying contents.

Thus 95% of the download is content.

The data rate in the upload direction in packets/second and bits/second due to the ACK packets is 120
packets/sec and 60,000 bits/sec. We expect the ACK packet rate to be around half of the data packet
rate for the typical pattern of one delayed ACK per two data packets received. The ACK bit rate will be
at least an order of magnitude below the data bit rate as the packets are much smaller, around 60 bytes.

The Ack number tells the next expected sequence number therefore it will be X plus the number of TCP

payload bytes in the data segment.

12

